新北师大七年级数学下册知识点总结 下载本文

第一章 整式运算

整 式 的 运 算

单项式 整 式 多项式

同底数幂的乘法 幂的乘方 积的乘方

幂运算 同底数幂的除法 零指数幂 负指数幂 整式的加减

单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法

多项式除以单项式

知识点(一)公式应用

1 、am?an?am?n (m,n都是正整数)如?b3?b2?________。

拓展运用am?n?am?an 如已知am=2, an=8,求am?n。 解:___________________. 已知am=2, an=8,求a2m?n.解:_____________________.

2 、(am)n?amn (m,n都是正整数) 如2(a2)6?(a3)4?_________________。 拓展应用amn?(am)n?(an)m。 若an?2,则a2n?__________。 3、(ab)n?anbn(n是正整数) 拓展运用anbn?(ab)n。 4、am?an?am?n(a不为0,m,n都为正整数,且m大于n)。

拓展应用am?n?am?an 如若am?9,an?3,则am?n?_____________。 5、a0?1(a?0);a?p?111?3(?2)???(a?0,是正整数)。 如

8(?2)3ap6、平方差公式(a?b)(a?b)?a2?b2 a为相同项,b为相反项。

如(?2m?n)(?2m?n)?(?2m)2?n2?4m2?n2

7、完全平方公式(a?b)2?a2?2ab?b2 (a?b)2?a2?2ab?b2 逆用:a2?2ab?b2?(a?b)2,a2?2ab?b2?(a?b)2. 如(2x?y)2?4x2?4xy?y2

8、应用式:a2?b2?(a?b)2?2ab a2?b2?(a?b)2?2ab 两位数 10a+b 三位数 100a+10b+c。 9、单项式与多项式相乘:m(a+b+c)=ma+mb+mc。

10、、多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb。

11、多项式除以单项式的法则:(a?b?c)?m?a?m?b?m?c?m.

12、常用变形:(x?y)=(y-x), (x?y)=-(y-x)2n2n2n?12n+1

知识点(三)运算:

1、常见误区:

1、?5(x2?3)?2(3x2?5)??5x2?3?6x2?5(?5x2?15?6x2?10); 2、2a?a?2 (a); 3、a?a?a(a5); 4、b?b?2b(b8); 5、x?x?x(2x5); 6、?a?4?a4(?63244455102361222); 7、(?3pq)??6pq (9p2q2); 4a558、a?a?a (a3); 9、a?a?0(1),(??3.14)?0 (1);

02210、(2a?b)(2a?b)?2a?b ((4a2?b2);

11、(ab?8)(ab?8)?ab?64 (a2b2?64); 12、(4x?5y)?16x?25y (16x240xy?25y2)。 2 、简便运算:

①公式类0.042005?252006?0.042005?252005?25?(0.04?25)2005?25?12005?25?25 ②平方差公式1232?124?122?1232?(123?1)(123?1)?1232?1232?1?1 ③完全平方公式9992?(1000?1)2?1000000?2000?1?998001

2222第二章 平行线与相交线

平行 线 与 相 交线

余角 余角补角 补角 角 两线相交 对顶角 同位角 三线八角 内错角 同旁内角 平行线的判定 平行线 平行线的性质 尺规作图

知识点(一)理论 1、 若∠1+∠2=90°,则∠1与∠2互余。若∠3+∠4=180°,则∠3与∠4互补。 2、 同角的余角相等若∠1+∠2=90°,∠2+∠4=90°.则∠1=∠4

等角的余角相等若∠1+∠2=90°,∠3+∠4=90°.∠1=∠3 则 ∠2=∠4 同角的补角相等若∠1+∠2=180°,∠2+∠4=180°.则∠1=∠4

等角的补角相等若∠1+∠2=180°,∠3+∠4=180°.∠1=∠3 则 ∠2=∠4 3 、对顶角

(1)、两条直线相交成四个角,其中不相邻的两个角是对顶角。

(2)、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。 (3)、对顶角的性质:对顶角相等。 4、同位角、内错角、同旁内角

(1)、两条直线被第三条直线所截,形成了8个角。形成4对同位角,2对内错角,2对同旁内角

(2)、同位角:两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,

这样的一对角叫做同位角。

(3)、内错角:两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这

样的一对角叫做内错角。

(4)、同旁内角:两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这

样的一对角叫同旁内角。

5、平行线的判定方法

(1)、同位角相等,两直线平行。 (2)、内错角相等,两直线平行。 (3)、同旁内角互补,两直线平行。

(4)、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行。