第1章 线性规划与单纯形法 下载本文

一、选择填空

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 二、判断正误

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 三、将下列问题化为标准型

MaxZ?2x1?x2?3x3?x4?x1?x2?x3?x4?71. ?s..t?2x1?3x2?5x3??8?x,x?0,x?0,x符号不限24?13''[解] 令x2??x2,x4?x4?x5,在约束1中引入非负的松弛变量x6,约束2两边

同乘以-1。整理得:

''MaxZ?2x1?x2?3x3?(x4?x5)''?x1?x2?x3?(x4?x5)?x6?7 ?'s..t??2x1?3(?x2)?5x3?8?x,x',x,x',x,x?0?123456

即:

MaxZ?2x1?x2?3x3?x4?x5?x1?x2?x3?x4?x5?x6?7?s..t??2x1?3x2?5x3?8?x,x,x,x,x,x?0?123456

2. Min Z=-x1+5x2-2x3

x1 +x2 - x3 ≤ 6

x1 + x2 = 10

x1 ≥ 0, x2 ≤ 0, x3符号不限

[解] 首先,令对变量x3进行处理,令x3 = x’3- x4;再令x’2 = - x2。然后对目标函数和约束条件进行标准化。 Max Z=x1+5x2+2x3-2x4

x1 - x2 - x3+x4+x5 = 6

s.t. 2x1 - x2 +3x3 ≥ 5

x1 - x2 = 10 x1, x2, x3, x4, x5, x6≥ 0

四、用图解法求解下列线性规

s.t. 2x1 + x2 +3x3 - 3x4 -x6 = 5

1. min Z= - x1+2x2

x1 - x2 ≥ -2

s.t. x1 +2x2 ≤ 6

x1, x2 ≥ 0

[解] 画图如下: x2

6 5 x1 - x2 ≥ -2

4 3

2 x1 +2x2 ≤ 6 1 E

-2 -1 0 1 2 3 4 5 6 7 8 x1

根据上图,最优解为X*=(x1, x2)T =(6, 0)T,最优值为-6。

2.Max Z= - x1+2x2

x1 - x2 ≥ -2

s.t. x1 +2x2 ≤ 6

x1, x2 ≥ 0 [解] 画图如下: x2

6 5 x1 - x2 ≥ -2

4 3

2 x1 +2x2 ≤ 6 1 E

-2 -1 0 1 2 3 4 5 6 7 8 x1

2814根据上图,最优解为X*?(x1,x2)T?(,)T,最优值为。

333

五、用单纯形法求解下列线性规划 1. Max Z=3x1+5x2

x1 ≤ 4

3x1 +2x2 ≤18

x1, x2≥ 0

[解] 首先,标准化后线性规划如下: (1)Max Z=3x1+5x2+0x3+0x4+0x5

x1 + x3 = 4

s.t. 2x2 ≤ 12

s.t. 3x1 +2x2 + x5 = 18

x1, x2, x3, x4, x5, x6≥ 0 再用表格单纯形法求解如下:

(一、按照第一个正检验数对应非基变量进基的方法) cj 3 5 0 0 0 CB XB b xj x1 x2 x3 x4 x5 0 x3 4 1 0 1 0 0 0 x4 12 0 2 0 1 0 0 x5 18 3 2 0 0 1 -Z 0 3 5 0 0 0 3 x1 4 1 0 1 0 0 0 x4 12 0 2 0 1 0 0 x5 6 0 2 -3 0 1 -Z -12 0 5 -3 0 0 3 x1 4 1 0 1 0 0 0 x4 6 0 0 3 1 -1 5 x2 3 0 1 -3/2 0 1/2 -Z -27 0 0 9/2 0 -5/2 3 x1 2 1 0 0 -1/3 1/3 0 x3 2 0 0 1 1/3 -1/3 5 x2 6 0 1 0 1/2 0 -Z -36 0 0 0 -3/2 -1 (二、按照最大正检验数对应非基变量进基的方法) cj 3 5 0 0 0 CB XB b xj x1 x2 x3 x4 x5 0 x3 4 1 0 1 0 0 0 x4 12 0 2 0 1 0 0 x5 18 3 2 0 0 1 -Z 0 3 5 0 0 0 2x2 + x4 = 12

θj 4/1 18/3 12/2 6/2 4/1 6/3 θj 12/2 18/2