Position[col]++; } } }
5.6»³öÏÂÃæ¹ãÒå±íµÄÁ½ÖÖ´æ´¢½á¹¹Í¼Ê¾£º ((((a), b)), ((( ), d), (e, f))) ¡¾½â´ð¡¿
5.7ÇóÏÂÁйãÒå±íÔËËãµÄ½á¹û£º
£¨6£© HEAD[((a,b),(c,d))]; (a,b) £¨7£© TAIL[((a,b),(c,d))]; ((c,d)) £¨8£© TAIL[HEAD[((a,b),(c,d))]]; (b) £¨9£© HEAD[TAIL[HEAD[((a,b),(c,d))]]]; b £¨10£© TAIL[HEAD[TAIL[((a,b),(c,d))]]]; (d)
µÚÁùÕ Ê÷ºÍ¶þ²æÊ÷
ϰ Ìâ
1£®ÊÔ·Ö±ð»³ö¾ßÓÐ3¸ö½áµãµÄÊ÷ºÍ3¸ö½áµãµÄ¶þ²æÊ÷µÄËùÓв»Í¬ÐÎ̬¡£ 2£®¶ÔÌâ1ËùµÃ¸÷ÖÖÐÎ̬µÄ¶þ²æÊ÷£¬·Ö±ðд³öǰÐò¡¢ÖÐÐòºÍºóÐò±éÀúµÄÐòÁС£
3£®ÒÑÖªÒ»¿Ã¶ÈΪkµÄÊ÷ÖÐÓÐn1¸ö¶ÈΪ1µÄ½áµã£¬n2¸ö¶ÈΪ2µÄ½áµã£¬¡¡£¬nk¸ö¶ÈΪkµÄ½áµã£¬Ôò¸ÃÊ÷ÖÐÓжàÉÙ¸öÒ¶×Ó½áµã£¿ [Ìáʾ]£º²Î¿¼ P.116 ÐÔÖÊ3
¡ß n=n0 + n1 + ¡¡ + nk
B=n1 + 2n2 + 3n3 + ¡¡ + knk n= B + 1
¡à n0 + n1 + ¡¡ + nk = n1 + 2n2 + 3n3 + ¡¡ + knk + 1 ¡à n0 = n2 + 2n3 + ¡¡ + (k-1)nk + 1
4. ¼ÙÉèÒ»¿Ã¶þ²æÊ÷µÄÏÈÐòÐòÁÐΪEBADCFHGIKJ£¬ÖÐÐòÐòÁÐΪABCDEFGHIJK£¬Ç뻳ö¸Ã¶þ²æÊ÷¡£
[Ìáʾ]£º²Î¿¼ P.148
5. ÒÑÖª¶þ²æÊ÷ÓÐ50¸öÒ¶×Ó½áµã£¬Ôò¸Ã¶þ²æÊ÷µÄ×ܽáµãÊýÖÁÉÙÓ¦ÓжàÉÙ¸ö£¿ [Ìáʾ]£º [·½·¨1]
£¨1£©Ò»¸öÒ¶×Ó½áµã£¬×ܽáµãÊýÖÁ¶àÓжàÉÙ¸ö£¿
½áÂÛ£º¿ÉѹËõÒ»¶È½áµã¡£
£¨2£©Âú¶þ²æÊ÷»òÍêÈ«¶þ²æÊ÷¾ßÓÐ×îÉÙµÄÒ»¶È½áµã
£¨3£©¿ÉÄܵÄ×î´óÂú¶þ²æÊ÷ÊǼ¸²ã£¿ÓжàÉÙÒ¶½áµã£¿ÈçºÎÔö²¹£¿
25<50<26
¿ÉÄܵÄ×î´óÂú¶þ²æÊ÷ÊÇ6²ã ÓÐ 25 = 32¸öÒ¶½áµã
¼ÙÉ轫ÆäÖÐx¸ö±äΪ2¶È½áµãºó£¬×ÜÒ¶½áµãÊýĿΪ50 Ôò£º2x + (32 ¨C x) = 50 µÃ£ºx = 18
´Ëʱ×ܽáµãÊýÄ¿= ( 26 ¨C 1) + 18¡Á2
[·½·¨2]
¼ÙÉèÍêÈ«¶þ²æÊ÷µÄ×î´ó·ÇÒ¶½áµã±àºÅΪm£¬ Ôò×î´óÒ¶½áµã±àºÅΪ2m+1, (2m+1)-m=50 m=49
×ܽáµãÊýÄ¿=2m+1=99
[·½·¨3]
ÓÉÐÔÖÊ3£ºn0=n2+1 ¼´£º50=n2+1 ËùÒÔ£ºn2=49
Áîn1=0µÃ£ºn= n0 + n2=99
6. ¸ø³öÂú×ãÏÂÁÐÌõ¼þµÄËùÓжþ²æÊ÷£º £¨1£©Ç°ÐòºÍÖÐÐòÏàͬ £¨2£©ÖÐÐòºÍºóÐòÏàͬ £¨3£©Ç°ÐòºÍºóÐòÏàͬ [Ìáʾ]£ºÈ¥Òì´æÍ¬¡£
£¨1£©D L R ÓëL D R µÄÏàͬµã£ºD R£¬Èç¹ûÎÞ L£¬ÔòÍêÈ«Ïàͬ, Èç¹ûÎÞ LR£¬¡¡£ £¨2£©L D R ÓëL R D µÄÏàͬµã£ºL D£¬Èç¹ûÎÞ R£¬ÔòÍêÈ«Ïàͬ¡£
£¨3£©D L R ÓëL R D µÄÏàͬµã£ºD£¬Èç¹ûÎÞ L R£¬ÔòÍêÈ«Ïàͬ¡£
£¨Èç¹ûÈ¥D£¬ÔòΪ¿ÕÊ÷£©
7. n¸ö½áµãµÄK²æÊ÷£¬ÈôÓþßÓÐk¸öchildÓòµÄµÈ³¤Á´½áµã´æ´¢Ê÷µÄÒ»¸ö½áµã£¬Ôò¿ÕµÄChildÓòÓжàÉÙ¸ö£¿ [Ìáʾ]£º²Î¿¼ P.119
8£®»³öÓëÏÂÁÐÒÑÖªÐòÁжÔÓ¦µÄÊ÷£Ô£º
Ê÷µÄÏȸù´ÎÐò·ÃÎÊÐòÁÐΪGFKDAIEBCHJ£» Ê÷µÄºó¸ù´ÎÐò·ÃÎÊÐòÁÐΪDIAEKFCJHBG¡£ [Ìáʾ]£º
£¨1£©ÏÈ»³ö¶ÔÓ¦µÄ¶þ²æÊ÷
£¨2£©Ê÷µÄºó¸ùÐòÁÐÓë¶ÔÓ¦¶þ²æÊ÷µÄÖÐÐòÐòÁÐÏàͬ
9£®¼ÙÉèÓÃÓÚͨѶµÄµçÎĽöÓÉ8¸ö×Öĸ×é³É£¬×ÖĸÔÚµçÎÄÖгöÏֵįµÂÊ·Ö±ðΪ£º
0.07£¬0.19£¬0.02£¬0.06£¬0.32£¬0.03£¬0.21£¬0.10 £¨1£©ÇëΪÕâ8¸ö×ÖĸÉè¼Æ¹þ·òÂü±àÂ룬 £¨2£©Ç󯽾ù±àÂ볤¶È¡£
10£®ÒÑÖª¶þ²æÊ÷²ÉÓöþ²æÁ´±í´æ·Å,ÒªÇ󷵻ضþ²æÊ÷TµÄºóÐòÐòÁÐÖеĵÚÒ»¸ö½áµãµÄÖ¸Õë,ÊÇ·ñ¿É²»ÓõݹéÇÒ²»ÓÃÕ»À´Íê³É?Çë¼òÊöÔÒò. [Ìáʾ]£ºÎÞÓÒ×ӵġ°×ó϶ˡ±
11. »³öºÍÏÂÁÐÊ÷¶ÔÓ¦µÄ¶þ²æÊ÷£º
12£®ÒÑÖª¶þ²æÊ÷°´ÕÕ¶þ²æÁ´±í·½Ê½´æ´¢£¬±àдËã·¨£¬¼ÆËã¶þ²æÊ÷ÖÐÒ¶×Ó½áµãµÄÊýÄ¿¡£ 13£®±àдµÝ¹éËã·¨£º¶ÔÓÚ¶þ²æÊ÷ÖÐÿһ¸öÔªËØÖµÎªxµÄ½áµã£¬É¾È¥ÒÔËüΪ¸ùµÄ×ÓÊ÷£¬²¢ÊÍ·ÅÏàÓ¦µÄ¿Õ¼ä¡£
[Ìáʾ]£º
[·½·¨1]£º£¨1£©°´ÏÈÐò²éÕÒ£»£¨2£©³¬Ç°²é¿´×Ó½áµã£¨3£©°´ºóÐòÊÍ·Å£» void DelSubTree(BiTree *bt, DataType x) {
if ( *bt != NULL && (*bt) ->data==x ) { FreeTree(*bt); *bt =NULL; }
else DelTree( *bt, x)
void DelTree(BiTree bt, DataType x) { if ( bt )
{ if (bt->LChild && bt->LChild->data==x)
{ FreeTree(bt->LChild); bt->LChild=NULL; }
if (bt->RChild && bt->RChild->data==x)
{ FreeTree(bt->RChild); bt->RChild=NULL; }
DelTree(bt->LChild, x); DelTree(bt->RChild, x); }
}
[·½·¨2]£º£¨1£©ÏÈÐò²éÕÒ£»£¨2£©Ö±½Ó²é¿´µ±Ç°¸ù½áµã£¨3£©ÓÃÖ¸Õë²ÎÊý£» [·½·¨3]£º£¨1£©ÏÈÐò²éÕÒ£»£¨2£©Ö±½Ó²é¿´µ±Ç°¸ù½áµã
£¨3£©Í¨¹ýº¯ÊýÖµ£¬·µ»ØÉ¾³ýºó½á¹û£»
£¨²ÎʾÀý³ÌÐò£©
14£®·Ö±ðдº¯ÊýÍê³É£ºÔÚÏÈÐòÏßË÷¶þ²æÊ÷TÖУ¬²éÕÒ¸ø¶¨½áµã*pÔÚÏÈÐòÐòÁÐÖеĺó¼Ì¡£ÔÚºóÐòÏßË÷¶þ²æÊ÷TÖУ¬²éÕÒ¸ø¶¨½áµã*pÔÚºóÐòÐòÁÐÖеÄǰÇý¡£ [Ìáʾ]£º