嫦娥三号软着陆轨道设计与控制策略数学建模论文 下载本文

嫦娥三号软着陆轨道设计与控制策略

摘要

本文通过对着陆以及绕行过程中,各个因素对着陆速度以及着陆地点的影响的描述,通过对软着陆过程的探索,建立合理的模型来确定最优控制策略以及着陆轨道。

针对问题一、二,就着陆器轨道的近月点以及远月点的位置和嫦娥三号在该点的速度大小和方向进行分析,通过天体运动规律等,计算出近月点坐标分别为:(19.51°W,50.00°N),远月点坐标为:(19.51°E,50.00°S)。近月点速度为1.67km/s,方向与径向成

?1?arccos571670。远月点速度为1.63km/s,方向与径向成。

?2?arctan1.671.63针对问题三,求解最优策略,通过建立不同的坐标参考系,建立一系列月球着陆动力学方程,解出径向最优轨迹和燃耗次优控制方向角。构成多项式制导公式。

针对问题四,确定嫦娥三号着陆轨道,应用多项式方程,仿真出着陆速度与时间的图像,径向距离与时间的图像,并对图像做出解释。

最后,对着陆过程中的各个因素产生的影响,对此阶段进行误差分析以及敏感性分析。解决在软着陆过程中,获取最优控制策略的解决方案。

关键词:软着陆; 多项式制导公式; 天体运动学公式; 误差分析;敏感度分析

1

一.问题重述

2013年12月2日1时30分,“嫦娥三号”探测器由长征三号乙运载火箭从西昌卫星发射中心发射。由于没有月球软着陆的经历,确定嫦娥三号的着陆轨道、嫦娥三号的着陆控制、减少软着路过程的燃料消耗将是面临的实际问题。

附件1 :给出了问题的背景与参考资料; 附件2 :给出了嫦娥三号软着陆过程; 附件3: 给出了距2400m处的数字高程图; 附件4 :给出了 距月面100m处的数字高程图;

试就我国的航天技术和外国软着陆的经验的相关情况,建立数学模型分析研究下面的问题:

(1)确定着陆准备轨道近月点和远月点的位置 (2)嫦娥三号近月点和远月点速度的大小与方向。 (3)确定嫦娥三号在6个阶段的最优控制策略。 (4)确定嫦娥三号的着陆轨道。

(5)对于我们设计的着陆轨道和控制策略做相应的误差分析和敏感性分析。

2

二. 问题分析

这是一个关于深空探测航天器软着陆的最优控制问题。

问题一:确定着陆准备轨道近月点和远月点的位置。

根据天体运动学公式,我们能够算出,在距离月球表面15千米时的切向速率,然后,进入主减速区时,径向方向做57m/s的匀速直线运动,垂直于径向方向做匀减速直线运动,末速度为0。利用三角形法则计算出垂直于径向方向速度,继而算出主减速区所用时间与垂直径向方向所走路程。推算出近月点和远月点的经纬度。

问题二:确定嫦娥三号在近月点和远月点的大小和方向。

根据天体运动规律,分别计算出飞行器在距月球15 km与100km时的速率,根据圆的性质,可计算出远月点的速率方向。在近月点,可根据问题一中的假设解答出在该点处的速率方向。

问题三:建立六个阶段的最优控制策略。

首先建立两个坐标系,对实际问题坐标化,然后,根据查表写出月球软着陆动力学方程。求解时,先计算径向最优轨迹模型,在计算燃油次优控制方向角,最终求出多项式制导公式。

问题四:确定嫦娥三号着陆轨道。

根据第三问求出的方程式,仿真出径向距离与时间的函数关系式,着陆器速度与时间的函数关系式。并对其进行一些必要的分析。

问题五:对于我们设计的着陆轨道和控制策略做相应的误差分析和

敏感性分析。对理论与实际进行对比,考虑多个因素对于着陆轨道和最优控制策略的影响。

3