精心制作仅供参考 鼎尚出品
27.2.3 切线
第2课时 切线长定理及三角形的内切圆
知|识|目|标
1.经历折叠纸片的操作过程,归纳得出切线长定理并掌握切线长定理. 2.经历教材中“试一试”的实践操作,理解三角形的内切圆及相关知识.
目标一 能探索并掌握切线长定理
例1 教材补充例题 如图27-2-12,已知⊙O的切线PA,PB,A,B为切点,把⊙O沿着直线OP对折,你能发现什么?请证明你所发现的结论. 结论:PA=________,∠OPA=________.
图27-2-12
证明:如图27-2-13,连结OA,OB. ∵PA,PB与⊙O相切,A,B是切点, ∴OA⊥________,OB⊥________, 即∠OAP=________=90°.
∵__________________________, ∴Rt△AOP≌Rt△BOP(H.L.),
∴PA=________,∠OPA=________. 图27-2-13 试用文字语言叙述你所发现的结论.
例2 高频考题 如图27-2-14,PA,PB分别切⊙O于A,B两点,∠OAB=30°. (1)求∠APB的度数;
(2)当OA=3时,求AP的长.
鼎尚出品
精心制作仅供参考 鼎尚出品
图27-2-14
【归纳总结】切线长定理中的基本图形:
如图27-2-15,PA,PB为⊙O的切线,A,B为切点,此图形中含有:
图27-2-15
(1)两个等腰三角形 (△PAB,△OAB);
(2)一条特殊的角平分线( OP平分 ∠APB和∠AOB); (3)三个垂直关系 (OA ⊥ PA, OB⊥PB,OP⊥AB). 目标二 理解三角形的内切圆
例3 教材补充例题 如图27-2-16,已知△ABC的内切圆⊙O与各边分别相切于点D,E,F,则点O是△DEF的( )
图27-2-16 A.三条中线的交点 B.三条高的交点
C.三条角平分线的交点
D.三条边的垂直平分线的交点
例4 教材补充例题 △ABC的内切圆的半径为r,△ABC的周长为l,求△ABC的面积S.
鼎尚出品
精心制作仅供参考 鼎尚出品
【归纳总结】三角形“四心”的区别:
外心 内心 重心 垂心 三角形外接圆的圆心,即三角形三边垂直平分线的交点 三角形内切圆的圆心,即三角形三条角平分线的交点 三角形三条中线的交点 三角形三条高的交点 提示:(1)三角形的内心到三角形三边的距离相等;三角形的内心与三角形某顶点的连线平分这个顶点处的内角;三角形的内心都在三角形内部.
(2)三角形的内切圆有且只有一个,而圆有无数个外切三角形.
1
(3)常用S△ABC=(a+b+c)r(其中a,b,c为△ABC的三边长)求三角形的内切圆的半径r.
2(4)若△ABC为直角三角形(不妨设∠C=90°),则△ABC内切圆的半径r=
a+b-c2
或r=
ab(其中a,b,c分别为∠A,∠B,∠C的对边).
a+b+c
知识点一 切线长及切线长定理
(1)圆的切线上某一点与________之间的线段的长叫做这点到圆的切线长. (2)过圆外一点所画的圆的两条切线,________相等.这一点和圆心的连线平分____________________. 知识点二 三角形的内切圆
鼎尚出品