2016年高考文科数学全国2卷试题及答案(Word版) 下载本文

.

2016年普通高等学校招生全国统一考试文科数学

注意事项:

一、 选择题:本大题共12小题。每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。

2,,3}B?{x|x2?9},则AIB? (1)已知集合A?{1,(A){?2,?1,0,1,2,3} (B){?2,?1,0,1,2} (2)设复数z满足z?i?3?i,则z=

(A)?1?2i(B)1?2i(C)3?2i(D)3?2i (3) 函数y=Asin(?x??)的部分图像如图所示,则

(C){1,(D){1,2,3} 2}

??(A)y?2sin(2x?)(B)y?2sin(2x?)

6 3??(C)y?2sin(2x+)(D)y?2sin(2x+)

6 3(4) 体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 (A)12?(B)

32?(C)??(D)?? 32

(5) 设F为抛物线C:y=4x的焦点,曲线y=(A)

k(k>0)与C交于点P,PF⊥x轴,则k= x13(B)1 (C)(D)2 222

2

(6) 圆x+y?2x?8y+13=0的圆心到直线ax+y?1=0的距离为1,则a= (A)?

43(B)?(C)3(D)2 34(7) 如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A)20π(B)24π(C)28π(D)32π

(8) 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一

名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为 (A)

5373(B)(C)(D)

881010(9)中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a为2,2,5,则输出的s=

(A)7 (B)12 (C)17 (D)34

(10) 下列函数中,其定义域和值域分别与函数y=10的定义域和值域相同的是

lgx Word 文档

.

(A)y=x(B)y=lgx(C)y=2(D)y?x1 x(11) 函数f(x)?cos2x?6cos((A)4(B)5

π?x)的最大值为 22

(C)6 (D)7

(12) 已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=|x-2x-3| 与y=f(x) 图像的交点为(x1,y1),(x2,y2),…,

(xm,ym),则

?x=

ii?1m(A)0 (B)m (C) 2m (D) 4m 二.填空题:共4小题,每小题5分.

(13) 已知向量a=(m,4),b=(3,-2),且a∥b,则m=___________.

?x?y?1?0?(14) 若x,y满足约束条件?x?y?3?0,则z=x-2y的最小值为__________

?x?3?0?(15)△ABC的内角A,B,C的对边分别为a,b,c,若cosA?54,cosC?,a=1,则b=____________.

135(16)有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________. 三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)

等差数列{an}中,a3?a4?4,a5?a7?6

(I)求{an}的通项公式; (II)设

bn=[

an],求数列{

bn}的前10项和,其中[x]表示不超过x的最大整数,如[0.9]=0,[2.6]=2

(18)(本小题满分12分)

某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:

随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:

Word 文档

.

(I)记A为事件:“一续保人本年度的保费不高于基本保费”。求P(A)的估计值; (II)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”. 求P(B)的估计值;

(III)求续保人本年度的平均保费估计值.

(19)(本小题满分12分)

如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将VDEF沿EF折到VD'EF的位置.

(I)证明:AC?HD'; (II)若AB?5,AC?6,AE?5,OD'?22,求五棱锥D'?ABCEF体积. 4

(20)(本小题满分12分)

已知函数f(x)?(x?1)lnx?a(x?1).

(I)当a?4时,求曲线y?f(x)在?1,f(1)?处的切线方程; (II)若当x??1,???时,f(x)>0,求a的取值范围.

(21)(本小题满分12分)

x2y2?1的左顶点,已知A是椭圆E:?斜率为k?k>0?的直线交E于A,M两点,点N在E上,MA?NA.

43(I)当AM?AN时,求VAMN的面积 (II)当2AM?AN时,证明:3?k?2.

请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分.

(22)(本小题满分10分)选修4-1:几何证明选讲

如图,在正方形ABCD中,E,G分别在边DA,DC上(不与端点重合),且DE=DG,过D点作DF Word 文档