2019 学年第一学期嘉定区九年级期终学业质量调研测试
数学试卷阅卷参考答案
(考试时间 100 分钟,总分 150 分)( 2020.1)
一、选择题 (本大题共 6 题,每题 4 分,满分 24 分) 1. D; 2. A; 3. D; 4. A; 5. B; 6. C.
二、填空题: (本大题共 12 题,每题 4 分,满分 48 分)
3
9. 54 ; 10. 7. ;8. 81;
2
2 ;11. ( 3
1,0) ;12. 0 ; 13. y x 2 1 ;14.
;15. 75; 16.
360 n
(不要求写出函数的定义域)
; 17. 32 ;18. 36 .
5
三、解答题( 本大题共 7 题,满分 58 分) 19. ( 本题满分 10 分)
解: 2cos30 tan 45 2sin 30 cot 30
31
= 2 × 1 2× - 3 ·······························8 分
2 2
= 3 1 1
3 0 . ································1+1 分
20. (本小题满分 10 分,第( 1)小题 6 分,第( 2)小题 4 分) 证明:在 Rt△ AOH 中,
∵ AHO 90 ,
AOH 30 , OH 0.6 ,
·······························2 分 ∴ AO 2OH 2 0.6 1.2 ( m). ·
∴ OB AB OA 3 1.2 1.8 ( m)
·····························2 分
在Rt△ BOH中,
∵ BHO 90 , OH
0.6 , OB 1.8 ,
·········································································· 0.6 1 ·1.8 3
2分
∴ sin ABH
OH OB
( 2)过点 A 向直线 BH 作垂线,垂足为 M ·1分 ·······························································
A
O
在Rt△ABM 中,
∵ AMB 90 , sin ABM ∴ AM
1
, AB 3 ,
M B
AB sin ABM
1 3
H 图 6-2 1
3× 1 ··································2分
3
3
答: ABH 的正弦值为
,点 A 到直线 BH 的距离是 1米. ············································· 1分
第 5 页 共 4 页
21. ( 本题满分 10 分)
·································1 分 解:设 AOB m , COD n , ·
由题意,得 l1 ∵ l1
mr nr
, l 2
l 2 ,∴
180
nr mr
=
180
································2 分
.·······································1 分
180 180
···································2 分 COD . ·
∵ ∴ ············1 分 OA 、 OB 、 OC 、 OD 都是⊙ O 的半径 , OA OB OC OD .··
OA OC , AOB ∵
COD , OB OD ,
∴ m n ,即 AOB
∴△ AOB≌△ COD . ·············································2 分 ∴ AB CD . ·················································1 分
22. ( 本题满分 10 分)
解:过点 A 作直线 BC 的垂线,垂足为 D (如图 7 所示) ····················1 分
由题意,得 ∴ BAC 又∵ B 90
···························1 分 BAD 60 , CAD 30 . ·
BAD CAD 30 ········································································· 1 分
60
30 ,∴ B
BAC . ··················1 分
BAD 90
∴ AC BC .··············································1 分 ∵ BC 20,∴ AC 在 Rt△ ACD 中, AD
BC 20 (海里) ····························1 分
AC cos CAD 20
3 2
10 3 (海里) ·············2 分
由题意知:以海岛 A 为圆心,半径长为 10 海里范围内有暗礁 .这里, AD 10 3 10 ,
所以,如果货轮继续向东航行,没有触礁的危险
. ······················2 分
A
D
E
图 7
D
B
图 8
C
23. ( 本题满分 12 分,第( 1)小题 4 分,第( 2)小题 8 分)
证明:( 1)∵ DE ∥ BC , ∴ BED
CBE ··························································· 1 分
又∵ ABE ∴
···························1 分 C ,∴△ BDE ∽△ CBE. ·
.············································1 分
DE BE
BE BC
∴ BE2
DE BC . ·········································1 分
( 2)∵ DE ∥ BC ,∴ AED
又∵ EAD ∴
C .又 ABE
C ,∴ AED
ABE . ··········1 分
BAE ,∴△ ADE ∽△ ABE . ··························1 分
. ···········································1 分
AE AB
AD AE
第 6 页 共 4 页
AD,∵ DE ∥ BC ∴
BD
∴
AE , 即 AD CE
AE
BD
.························1 分 CE
AE
BD
AB CE
∵ BE 平分 ABC ,∴ ABE
BD BE
. ···········································1 分
CBE ,又∵ ABE C ,∴ CBE C . ···1 分
∴ BE CE . ············································1 分 ∴
AE
.············································1 分 AB
24.( 本题满分 12 分,每小题 4 分)
解:( 1) 图像基本正确(开口方向、对称轴、顶点、大致光滑)
············2 分 y x2 2 ·······2 分
.
将图 9 中的抛物线 y x 2 向下平移 2 个单位长,可得抛物线
备注:如果使用“列表、描点、连线”的方式叙述,需要呈现列表使用的表格
2)由题意,得点 A( x, y) 的“关联点”为 A1( x, y x) ·( ···················1 分
由点 A( x, y) 在抛物线 y
x2 上,可得 A(x, x 2 ) , A1( x, x2 x 2 上,∴ x x
2
2
x) ······························ 1 分
又∵ A1 (x, y x) 在抛物线 y
x
2
2 ··················1 分
解得 x 2 .将 x 2 代入 A1( x, x 2 x) ,得 A1 (2,2) ·····················1 分
x 2 nx) , ·······················1 分 ( 3)点 A( x, y) 的“待定关联点”为 A ( x, 2
∵ A2 ( x, x 2 nx) 在抛物线 y
x2 n的图像上,∴ x2 nx x 2 n . ···········1 分
∴ n nx 0 , n(1 x) 0 .又∵ n 0 ,∴ x 1 . ·······················1 分
当 x 1 时, x
2
1 n) .··nx 1 n ,故可得 A2 (1,·····················1 分
25.( 本题满分 14 分,第( 1)小题 4 分,第( 2)、( 3)小题各 5 分)
证明: ( 1) ∵ ABP
∴ ABP 即
BAP APB APB
APB 180 , APB APB APB
BAP
·········1 分 BAC 180 , ·
BAP BAP
BAC . ·························1 分
CAP .
ABP
∴ ABP 又∵ APB
CAP. ··········································1 分
···························1 分 APC ,∴ △PAB∽ △ PCA.··
( 2) 如图 10-1,∵ APB ·······1 分 BAC 180 , APB 120 ,∴ BAC 60 . ·
1
············1 分 AC . ·在△ ABC 中,∵ ABC 90 , BAC 60 ,∴ AB
2
PB PAAB 1
又∵ △PAB∽ △PCA,∴ . ··························1 分
PA PC AC 2
PB PB PA 1 PC
,即 ∴ 4 . ································2 分
PB PC PA PC 4 A
A A A
P B
图 10-1
C
P
第 7 页 共 4 页
B
C
P
P
C
B
图 10-2
C B
( 3) ∵ BAC 45 , APB
BAC 180 , APB APC 360 135 135
APC ,∴ APB APC 135 .
∴ BPC 360
APB 90 .················1 分 PC PA PA PB
( AC) .
AB
2
PAPC AC PC
∵ △PCA∽ △PAB,∴ ,∴
PB PA AB PB
PC ( AC )2 1 .
①如图 10-2 ,当 △ABC 是等腰三角形,且 AB AC 时, tan PBC
PB AB
·····················································1 分
②如图 10-3,当 △ ABC 是等腰三角形,且 AB BC 时, ACB
BAC 45 , ABC 90 ,
易得
AC AB
2 ,∴ tan PBC
PC PB
(
AC2
) 2 ··························2 分 AB
BAC 45 , ACB 90 ,
③如图 10-4 ,当 △ABC 是等腰三角形,且 AC BC 时, ABC
易得
AC AB
AC 2
,∴ tan PBC ( )2 PB AB
2
PC
1 2
1 2
.··························1 分
2 分;两个
备注: 写出 tan PBC 2 , tan PBC
这两个答案之中的一个,即可得到
全部写出,得 3 分.
第 8 页 共 4 页