53-33-7×23=42(立方厘米)
这部分可以分割棱长是1厘米的小正方体42个,所以总共分割出小正方体个数是:
1+7+42=50(个)
比较上面两种方案,最少可以分割成50个小正方体. 4.684
36=32×4,A、B至少含有两个3和一个4.因为A有12个约数,12=2×6=3×4,所以A可能是35×4、32×43或33×42,B有8个约数,8=2×4,所以B=33×4,于是A只能是32×43,故 A+B=32×43+33×4=684 5. 144
设原正方形的边长为x厘米,如图,由于正方形ABCD与长方形AEGH面积相等,而长方形AEFD是正方形ABCD和长方形AEGH的
公共部分,所以长方形EBCF的面积等于长方形DFGH的面积,于是 4x=6×(x-4) 6x-4x=24 x=12
故原正方形的面积是: 12×12=144(平方厘米).
6.720
第一枚硬币有18种放法;第二枚硬币只能有10种放法,因为这枚硬币放置时与第一枚不同行不同列;同理,第三枚硬币与前二枚硬币不同行也不同列,所以有4种放法.因此共有 18×10×4=720(种)
这串数的规律是,从第2个数起,每一个数的分子是它前一个数的分子与分母之和,分母是它前一个数的分子的2倍再加分母.若设
8.100
因为 1997÷4=499…1,所以排尾同学报1,而1997÷5=399…2,所以排头同学报2.
从右起第3名同学两次报数都是3,以后每 相差[4,5]=20名同学两次报数都是3,那么将 1997-3=1994人分成每20人一组,共可分成 1994÷20=99…14
99组,所以两次都报3的人数是99+1=100人.
9.24
由于只有两个面涂上红色的小长方体只能位于每条棱的中间部分,将长方体按下图进行分割:
依次分割的小长方体的个数是36、32、30、24,则图(4)分割的块数最少是24块,且恰好有16个两面涂红色的小长方体. 10.61
把长方形按比例缩小,由于 420∶240=7∶4
所以把长方形缩小成长7个小方格,宽4个小方格的小长方形,然后画一条对角线,如图,图中对角线经过2个格点,即对角线对长来讲,每经过7个小方格,就经过一个格点,或对宽来讲,每经过4个小方格,就经过一个格点,所以长方形的对角线经过的格点问题类似植树问题,共经过格点数: 420÷7+1=61(个)(或240÷4+1=61(个)) 二、解答题:
1.甲、乙两码头间的距离是900千米.
由于往返的路程相等,船从甲到乙每天航行300千米,从乙到甲每行航
知往返共22天,可得出从甲到乙行12天,从乙到甲用10天,而300×12+360×10相当于船在甲、乙两码头间往返4次所行的总路程,所以甲、乙两码头的距离.
(300×12+360×10)÷4÷2=900(千米) 2.编号是1、2、4、6、7的灯是亮的.
对于亮着的灯,只要拉动偶数次开关仍是亮的,拉动奇数次开关是灭的;对于开始关闭的灯,只要拉动奇数次开关灯就亮,拉动偶数次开关仍是灭的.因为
500÷8=62…4
说明这8盏灯各拉动62次后,编号为1、2、3、4的灯又拉动一次,由于62是偶数,所以原来亮的灯仍是亮的,灭的灯仍是灭的,即编号是3、6、7的灯各拉动62次后仍是亮的,其余灯是灭的,接着编号是1、2、3、4的灯各拉动一次,编号1、2、4的灯亮了,编号3的灯灭了,所以这8盏灯最后是1、2、4、6、7这五盏灯是亮的.3.容器内的酒精溶液浓度是72.9%第一次倒出纯酒精是1升,加上1升水后,变成酒精溶液,第二次倒出的溶液含纯酒精是:
第三次倒出的溶液含纯酒精是:
三次倒出后,容器里还有纯酒精是: