y1y2k2x1x2?km(x1?x2)?m21?8k2m2222??k,k?m?0?m?0所以,?即,,又,所以,x1x2x1x241?4k2即k??1. 2由于直线OP,OQ的斜率存在,且V>0,得0<m2<2且m2?1.
11SVOPQ=dPQ?x1?x2m?m2(2?m2),所以SVOPQ的设d为点O到直线l的距离,则 22(01,)取值范围为.
解析:
21答案及解析:
答案:(1)f?(x)?lnx?2?4ax
Qf(x)在(0,??)内单调递减,?f?(x)?lnx?2?4ax?0在(0,??)内恒成立,
即4a?lnx2?在(0,??)内恒成立 xxlnx2?1?lnx ?,则g?(x)?xxx2令g(x)?11∴当0?x?时,g?(x)?0,即g(x)在(0,)内为增函数;
ee当x?11时,g?(x)?0,即g(x)在(,??)内为减函数 ee1e?g(x)的最大值为g()?e?a?[,??)
4e(2)若函数f(x)有两个极值点分别为x1,x2, 则f?(x)?lnx?2?4ax?0在(0,??)内有两根x1,x2, 由(1),知0?a??lnx1?2?4ax1?0e,由?,两式相减,
lnx?2?4ax?04?22
得lnx1?lnx2?4a(x1?x2),不妨设0?x1?x2.
x1?x211,只需证明 ?4a(x1?x2)2a(lnx1?lnx2)2ax2(1?1)2(x1?x2)x2x即证明?lnx1?lnx2,亦即证明?ln1,
x1x1?x2x2?1x2∴要证明x1?x2?
令函数h(x)?2(x?1)?lnx,0?x?1. x?1
?(x?1)2?h?(x)??0,即函数h(x)在(0,1]内单调递减 2x(x?1)?x?(0,1)时,有h(x)?h(1)?0,?2(
2(x?1)?lnx x?1
x1?1)x2x1即不等式 ?ln1成立,综上,得x1?x2?x1x22a?1x2解析:
22答案及解析:
答案:(1).曲线C1的普通方程为x2??y?2??5.
由?2?x2?y2,?cos??x,得曲线C2的直角坐标方程为x2?y2?4x?3?0.
(2).将两圆的方程x2??y?2??5与x2?y2?4x?3?0作差得直线AB的方程为x?y?1?0. ?2t?x??2点P?0,?1?在直线AB上,设直线AB的参数方程为?(t为参数) ?y??1?2t??222代入x2?y2?4x?3?0化简得t2?32t?4?0,所以t1?t2?32,t1t2?4. 因为点M对应的参数为
t1?t232, ?22所以PM?AB?解析:
23答案及解析:
t1?t232?t1?t2??22?t1?t2?2?4t1t2?32?18?4?4?3 2?x?1??1?x?1?x??1x?1?x?1?1?x?1(1). 答案:不等式等价于?或?或?2x?1?x?11?x?1?2x?1?x?1???解得1?x?2或0?x?1或x??.
所以不等式f?x??x?1的解集是?x|0?x?2?. ??2x?1,x??1?(2)由(1)得,f?x???1,?1?x?1,
?2x?1,x?1?
1??4x?1,x???2??6x?3,x??1?1?1?. 所以y?3f?x???3,?1?x?1,y?f?2x???1,??x?22?6x?3,x?1??1?4x?1,x??2?画出函数y?3f?x?和y?f?2x?的图像,如图所示,观察图像,可得3f?x??f?2x?.
解析: