系 专业 班 学号 姓名 ┉┉┉┉┉┉┉┉┉┉┉密┉┉┉┉┉┉┉┉┉┉封┉┉┉┉┉┉┉┉┉┉线┉┉┉┉┉┉┉┉┉┉ 试卷类型: A 高等几何 使用专业年级 考试方式:开卷( )闭卷(√) 共 6 页 题号 一 二 三 四 五 六 合计 得分 一、 填空题(每小题4分,共20分) 1、设P1(1),P2(-1),P1P2P3)? 。 3(?)为共线三点,则(P2、写出德萨格定理的对偶命题: 。 3、若共点四直线a,b,c,d的交比为(ab,cd)=-1,则交比(ad,bc)=______。 4、平面上4个变换群,射影群,仿射群,相似群,正交群的大小关系为: 。 25、二次曲线的点坐标方程为4x1x3?x2?0,则其线坐标方程为是 。 二、 选择题(每小题2分,共10分) 1.下列哪个图形是仿射不变图形?( ) A.圆 C.矩形 222. u1?2u1u2?8u2?0表示( ) B.直角三角形 D.平行四边形 A.以-1/4为方向的无穷远点和以1/2为方向的无穷远点 第1页
B. 以-4为方向的无穷远点和以2为方向的无穷远点 C. 以4为方向的无穷远点和以-2为方向的无穷远点 D. 以1/4为方向的无穷远点和以-1/2为方向的无穷远点 3.两个不共底且不成透视的射影点列至少可以由几次透视对应组成?( ) A.一次 C.三次 B.两次 D.四次 4.下面的名称或定理分别不属于仿射几何学有( ): A. 三角形的垂心 B. 梯形 C.在平面内无三线共点的四条直线有六个交点 D.椭圆 5.二次曲线按射影分类总共可分为( ) A.4类 C.6类 B.5类 D.8类 三、判断题(每小题2分,共10分) 1.仿射对应不一定保持二直线的平行性。( ) 2.两直线能把射影平面分成两个区域。( ) 3.当正负号任意选取时,齐次坐标(?1,?1,?1)表示两个相异的点。( ) 4. 在一维射影变换中,若已知一对对应元素(非自对应元素)符合对合条件,则此 射影变换一定是对合。( ) 5.配极变换是一种非奇线性对应。( ) 第2页
┉┉┉┉┉┉┉┉┉┉┉密┉┉┉┉┉┉┉┉┉┉封┉┉┉┉┉┉┉┉┉┉线┉┉┉┉┉┉┉┉┉┉ 四、作图题(8分) 已知线束中三直线a,b,c,求作直线d,使(ab,cd)=-1。(画图,写出作法过程和根据) 五、证明题(10分) 如图,设FGH是完全四点形ABCD对边三点形,过F的两直线TQ与SP分别交AB,BC,CD,DA于T,S,Q,P.试利用德萨格定理(或逆定理)证明: TS与QP的交点M在直线GH上。 第3页