应用抽样技术期末复习题重点讲义资料 下载本文

1a y???yi?212.625

ai?1aM??(yi?y)2?15?47.9821?719.7315 s?a?1i?12b v(y)?1?f2sb?5.9198 aM se(y)?2.43,所以该城市大学生人均月生活费支出95%的置信区间为:

y?t?se(y)?(207.86,217.39) 1a2(2)s??si?917.20

ai?12w22sb?sw?c?2???0.0146 2sb?(M?1)sw?c?0.7956 deff?1?(M?1)?

9、解:全县今年的平均亩产量的分别比率估计量

??yh,R??1.039,R??1.058 由题可得:Rh12xh??X)?389.89 yRs??Wh(Rhhh?12全县今年的平均亩产量的联合比率估计量

由题可得:yst??Whyh?389.62,xst??Whxh?371.58

h?1h?122??yst?1.049 RCxst X??Wh?Xh?371.98

h?12??X?390.21 yRC?RC

10、解:n1?400*1/4?100

n2?600*1/4?150

16

即各层的样本量分别为100和150人

11、解:ni?nNiSiNiSi ?30*NS132*6?92*5?27*3?iin1?30*N1S1?18 n2?10 n3?2 1333(?Ni?i/Ci)(?Ni?iCi)126.38?2102.4=?27.06?28 222NS?yst???Ni?i9000?819.54

12、解:n?N2S2?yst???Ni?i2(?Ni?i/Ci)

(?Ni?i/Ci)=

154?1.593?1.853?1.8???126.38 356?N?iiCi)=154*1.5*3?93*1.8*5?53*1.8*6?2102.4

N2S2?yst?=3002?0.12?9000

?N?i2i=154*2.25?93*3.24?53*3.24?819.54

N1?1/C1?28?77?17.059?17

126.3833.48?7.42?7

126.3815.9?3.523?4

126.38n1?n?N?ii/Ci)n2?nN2?2/C2?N?ii/Ci)?28?n3?nN3?3/C3?N?ii/Ci)?28?即各层的样本量分别为17、7、4

???NY?50696 13、解:Yhh?)?4324?50696 s(Y?=(42048,59344) Y分析:略。

14. 解:(1)比例分配:

根据表中所给的数据,利用公式nh?n17

Nh直接可计算出各层样本量: Nn1?20,n2?23,n3?19,n4?17,n5?8,n6?6,n7?7

(2)最优分配:

当各层的单位调查费用相等时,最优分配样本量计算公式为:

nh?n?NhShL

h?NShh?1同样将表中的相关数据代入公式即可求出此时各层的样本量为:

n1?10,n2?18,n3?17,n4?19,n5?12,n6?9,n7?15

15. 解:(1) x? 样本方差:??27?202.5?5?147?12?121.11?150.24

7?5?122??ini?ni82.22?7?36.842?5?47.352?12??3374.5

24 抽样平均误差ux??2n(1?n3374.5)?(1?5%)?11.56 N24 概率保证程度为95.45%,可查表获得t=2,?x?tux?2?11.56?23.12

在95.45%的概率保证程度下,可得该县农作物平均每村产量的置信区间为

(150.24-23.12, 150.24+23.12)。

2?1?7(2) 样本成数p??41.67%

7?5?12样本方差

251475??7???5???12pi(1?pi)ni77?551212p(1?p)???0.21

24?ni抽样平均误差up?p(1?p)n0.21(1?)?(1?5%)?9.12% nN24概率保证程度为95.45%,可查表获得t=2,?x?tux?2?9.12%?18.24% 在95.45%的概率保证程度下可得该县低产量村比例的置信区间为

(41.67%-18.24%,41.67%+18.24%)

16. 解:已知N=510,n=12,M=8,f=n/N=0.0235 故: n1188?180.5???258.38 y?yi??218.38(元)ni?112

2n?(188-218.38)???M822 sb?(yi-y)????2n-1i?112?1??(258.38?218.38)?

∑∑14186.18v(y)?

1-fnMs(y)?v(y)?sb21-0.0235??14186.18?144.318

12?8144.3?12.013

于是 的置信度为95%的置信区间为

Y 218.38?1.96?(12.013)

241.93元??194.83元,17. 解:由题意得到N?400,n?4,M?10,f??1故Y?y?Mnn4??0.01 N400?yi?1ni?19?20?16?20?1.875(份)

10?4y?M?y?10?1.875?18.75(份)

??M?N?y?10?400?1.875?7500(份) Y2sbM?n?1?i?1n(yi?y)2

1?f21?f1v(y)?sb?nMnM2n?1?(yi?1ni?y)2

1?0.01(19?18.75)2???(20?18.75)2 ??4?14?102?0.00391875

?)?N2M2v(y)?4002?102?0.00391875?62700 v(Y于是由以上的计算结果得到平均每户的订报份数为1.875,估计量方差为

0.00391875。该辖区总的订阅份数为7500,估计量方差为62700。

18、解:已知N?87,n?15,f?由已知估计同意改革的比例:

n15 ?N87??p?yi?1ni?1ni?i?M1M?nni?1646?0.709 911?Mi?60.733

n11?f1?)?2v(pnn?1M?(yi?1i?Mi)2?0.008687 ?p此估计量的标准差为

19

?)?v(p?)?0.008687?0.9321 s(pnnn1019、解:已知N=48, n=10, f=?, 由题意得?yi?736,?Mi?365,

N48i?1i?1??N则办公费用的总支出的估计为Yn?yi?i?1n48?736?3532.8(元) 101n1群总和均值y??yi??736?73.6(元)

ni?110?)?N(1?f)?v(Yn2?(yi?1ni?y)2n?1

10)(83?73.6)2?(62?73.6)2?...?(80?73.6)248= ?1091= 182.4??3590.4

9= 72765.44 482?(1??)=269.7507 v(Y?的置信度为95%的置信区间为3532.8?1.96?269.7507,即[3004.089,则Y4061.511].

20、解:已知N?200,n?10,M?6,m?3,f1?n10m??0.05,f2??0.5 N200M??p?yi?1ninm?9?0.3 10?311?f1?)?2?v(p?nn?1m?(yi?1ni?p?m)?0.005747

?)?v(p?)?0.005747?0.0758 s(p在置信度95%下,p的置信区间为

??t?/2v(p?))=(0.3?1.96?0.0758)?(0.151432,0.448568) (p

20