《二次函数的应用》教案 下载本文

《二次函数的应用》教学设计

一、教学背景分析: 1.教学内容分析:

二次函数的知识是七到九年级数学学习的重要内容之一,它的应用是本章的教学重点也是难点。因为它是从生活实际问题中抽象出的数学知识,又是在解决实际问题时广泛应用的数学工具,因此这部分的教学内容具有重要意义;同时学好二次函数的应用,可又为高中进一步学习各类初等函数作好准备。而经历从实际问题情景入手,抽象出解决问题的数学模型和相关知识的过程中不仅可以让学生体会数学的价值和建模的意义,更能提高学生应用数学知识解决问题的意识。

2.学生情况分析:

本节课的授课对象是九年级的学生。在此之前,学生已经掌握了求二次函数解析式的方法并理解图象上的点和图象的关系,并且学习了一元一次方程、一元一次不等式、一元二次方程、一次函数的应用,以及初步的二次函数的应用,经历了多次从实际问题抽象出数学知识再运用相关知识解决实际问题的过程;因此他们有解决简单实际问题的基础知识和基本能力。但是,由于函数知识的抽象性,多数学生在学习时应用函数的意识并不强;同时,他们从实际问题中抽象出数学问题的能力以及利用已有的数学知识去解决的能力也是比较弱的。

二、教学重点:

建立适当的坐标系解决实际问题.

三、教学难点:

正确理解实际问题中的量与坐标系中的点的对应关系.

四、教学目标:

1.能把实际问题归结为数学知识来解决,并能运用二次函数的知识解决实际问题. 2.经历在具体情境中抽象出数学知识的过程,体验解决问题方法的多样性,体会建模思想,渗透转化思想、数形结合思想,提高数学知识的应用意识.

3.在运用数学知识解决问题的过程中,体会数学的价值、感受数学的简捷美,并勇于表达自己的看法.

五、教学方式:

引导发现、合作探究

六、教学手段:

多媒体、学案

七、教学过程: 教学环节 师生活动 一、情境引入 教师用多媒体展示颐和园图片: 设计意图 从学生熟悉的生活情境引入,激发学生的学习兴趣。 同学们知道这是哪儿吗? 颐和园是目前中国最大、现存最完整的皇家园林。在颐和园的湖区景点中,有一座非常著名的桥就是——十七孔桥,它是乾隆年间修建的,全长150米,宽8米,全长150米,宽8米;因有十七个桥洞而得名,是圆内最大的一座石桥。西连西湖岛,东接廊如亭,飞跨于东堤和南湖岛之间,也是通往南湖岛的唯一通道。 十七孔桥的桥洞有我们学过的什么形状? 今天我们就来研究二次函数应用中的拱桥问题。 二、新知探索 教师用多媒体出示例题 : 例:如图,抛物线形的拱桥,当水面在CD时,拱桥顶E离水面CD为2m,水面CD宽4 m,当水面下降1 m时,水面宽度AB是多少米? 在独立审题的过程中, 经历在具体情境中E C A D B 抽象出数学知识的过程。 通过提问引导,帮学生分析解决问题的关键。 学生独立思考再小组合作,各抒己见,在合作中学会倾听, (一)师生共同分析,将实际问题转化成数学问题 (1)学生独立分析题意,一名同学口述标图,教师板书: (2)教师引导:学生将原图中的抛物线抽象出来,分析要解决的数学问题。 ① 将这里的抛物线抽象出来后,已知什么?未知呢? ② 联系我们已有的知识,我们可以将线段长度问题转化成什么?(坐标) ③ 在学习用坐标表示点的位置时,我们借助了什么工具呢? (坐标系) ④ 现在没有坐标系,我们应该怎么做呢?(画一个坐标系) ⑤ 建立坐标系后就能有点的坐标么?(不一定) ⑥ 我们来看A、B两点在哪儿?(抛物线上) ⑦ 因此我们需要先求出这个抛物线的解析式,然后再求A、B两点坐标。 (3)教师初步小结: 而在研究二次函数时,我们仍然是在坐标系中研究它的图象以及解析式,因此现在解决问题的关键就是——建立平面直角坐标系。 教师提问: 那么怎样建系能求出抛物线的解析式呢?请你在备用图上试一试。