2020版导与练一轮复习理科数学习题:第十二篇 系列4选讲(选修4-44-5) 第2节 不等式选讲 下载本文

第2节 不等式选讲

【选题明细表】

知识点、方法 绝对值不等式的解法 已知不等式的解集求参数的取值范围 不等式的证明方法 1.(2018·全国Ⅲ卷)设函数f(x)=|2x+1|+|x-1|. (1)画出y=f(x)的图象;

(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.

题号 1,2 2,4 3

解:(1)f(x)=y=f(x)的图象如图所示.

(2)由(1)知,y=f(x)的图象与y轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a≥3且b≥2时,f(x)≤ax+b在[0,+∞)上恒成立,因此a+b的最小值为5. 2.(2016·全国Ⅲ卷)已知函数f(x)=|2x-a|+a. (1)当a=2时,求不等式f(x)≤6的解集;

(2)设函数g(x)=|2x-1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围. 解:(1)当a=2时,f(x)=|2x-2|+2. 解不等式|2x-2|+2≤6得-1≤x≤3. 因此f(x)≤6的解集为{x|-1≤x≤3}. (2)当x∈R时,

f(x)+g(x)=|2x-a|+a+|1-2x| ≥|2x-a+1-2x|+a =|1-a|+a,

当x=时等号成立,所以当x∈R时,f(x)+g(x)≥3等价于|1-a|+a≥3.(*)

当a≤1时,(*)等价于1-a+a≥3,无解. 当a>1时,(*)等价于a-1+a≥3,解得a≥2. 所以a的取值范围是[2,+∞).

3.(2018·西安市一模)已知函数f(x)=|2x-1|,x∈R. (1)解不等式f(x)<|x|+1;

(2)若对于x,y∈R,有|x-y-1|≤,|2y+1|≤,求证:f(x)<1. (1)解:不等式f(x)<|x|+1,等价于|2x-1|<|x|+1. 当x≤0,不等式可化为-2x+1<-x+1, 即x>0,不成立;

当0≤x≤,不等式可化为-2x+10,所以0,不等式可化为2x-1

解:(1)由f(x)≤2得,|x-m|≤3,