二次根式
A级 基础题
1.(2018年上海)下列计算18-2的结果是( ) A.4 B.3 C.2 2 D.2
2.(2018年山东聊城)下列计算正确的是( ) A.310-2 5=5 B.7?·?11?
11÷7
1?
?=11 11?
18
C.(75-15)÷3=2 5 D. 18-3 =2
391
3.(2017年四川绵阳)使代数式+4-3x有意义的整数x有( )
x+3A.5个 B.4个 C.3个 D.2个 4.与-5是同类二次根式的是( ) A.10 B.15 C.20 D.25
5.(2017年江苏南京)若3 6.(2017年北京)写出一个比3大且比4小的无理数:______________. 7.(2017年山西)计算:418-9 2=__________. 8.计算:6 1 -(3+1)2=________. 3 9.当1<a<2时,代数式(a-2)2+|1-a|的值是________. 10.(2018年浙江嘉兴)计算:2(8-1)+|-3|-(3-1)0. 11.(2017年贵州六盘水)计算:(-1)0-|3-π|+ 3-π 2. B级 中等题 12.设n为正整数,且n<65<n+1,则n的值为( ) A.5 B.6 C.7 D.8 13.如果ab>0,a+b<0,那么下面各式:①=-b,其中正确的是( ) A.①② B.②③ C.①③ D.①②③ 14.下列各式运算正确的是( ) A.5-3=2 B.C. 12-3 =2+3 D. 114=2 93 2-52=2-5 aa=;②bb a ·b b =1;③ab÷a ab 15.(2017年山东济宁)若2x-1+1-2x+1在实数范围内有意义,则x满足的条件是( ) 1111A.x≥ B.x≤ C.x= D.x≠ 222216.若y= x-4+4-x -2,则(x+y)y=________. 2 17.(2018年山东枣庄)如图1-3-1,我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S= 1??a2+b2-c2?2?.现已知△ABC的三边长分别为 a2b2-????24???? 5,2,1,则△ABC的面积为________. 图1-3-1 C级 拔尖题 18.已知任意三角形的三边长,如何求三角形面积? 古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式——海伦公式S=p p-a p-b p-c ?其中a,b,c是三角形的三边长,p=a+b+c,S为三角形的面积?,并给出了证明. ??2?? 例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算: ∵a=3,b=4,c=5, a+b+c∴p==6. 2∴S=p p-a p-b p-c =6×3×2×1=6. 事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决. 如图1-3-2,在△ABC中,BC=5,AC=6,AB=9. (1)用海伦公式求△ABC的面积; (2)求△ABC的内切圆半径r. 图1-3-2 参考答案 1.C 2.B 3.B 4.C 5.B 6.π(答案不唯一) 解析:∵3 10.解:原式=4 2-2+3-1=4 2. 11.解:原式=1-(π-3)+(π-3)=1. 112.D 13.B 14.C 15.C 16. 417.1 解析:∵S=1??a2+b2-c2?2?,∴△ABC的三边长分别为1,2,5,则a2b2-????24????1??12+22-12×22-??4?2? 5 2?? ?2?=1. △ABC的面积为:S= ?? 18.解:(1)∵BC=5,AC=6,AB=9, BC+AC+AB5+6+9∴p===10. 22