2017年河北省石家庄市裕华区中考数学一模试卷 下载本文

的侧面积为 .

19.(3分)对于二次函数y=x2﹣3x+2和一次函数y=﹣2x+4,把y=t(x2﹣3x+2)+(1﹣t)(﹣2x+4)(t为常数)称为这两个函数的“再生二次函数”.其中t是不为零的实数,其图象记作抛物线F,现有点A(2,0)和抛物线F上的点B(﹣1,n),下列结论正确的有 . ①n的值为6; ②点A在抛物线F上;

③当t=2时,“再生二次函数”y在x>2时,y随x的增大而增大 ④当t=2时,抛物线F的顶点坐标是(1,2)

三、解答题(本大题共7小题,共69分)

20.(9分)请你阅读小明和小红两名同学的解题过程,并回答所提出的问题. 计算:

+

问:小明在第 步开始出错,小红在第 步开始出错(写出序号即可);请你给出正确解答过程.

21.(9分)某学校为了丰富学生课余生活,决定开设以下体育课外活动项目:A.版画 B.保龄球C.航模 D.园艺种植,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:

第5页(共37页)

(1)这次被调查的学生共有 人; (2)请你将条形统计图(2)补充完整;

(3)在平时的保龄球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加保龄球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)

22.(9分)在学习三角形中位线的性质时,小亮对课本给出的解决办法进行了

认真思考:

请你利用小亮的发现解决下列问题:

(1)如图1,AD是△ABC的中线,BE交AC于E,交AD于E,且AE=EF,求证:AC=BF.

请你帮助小亮写出辅助线作法并完成论证过程:

第6页(共37页)

(2)解决问题:如图2,在△ABC中,∠B=45°,AB=10,BC=8,DE是△ABC的中位线,过点D、E作DF∥EG,分别交BC于F、G,过点A作MN∥BC,分别与FE、GE的延长线交于M、N,则四边形MFGN周长的最小值是 .

23.(10分)小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y(℃)与开机时间x(分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y(℃)与开机时间x(分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:

(1)当0≤x≤8时,求水温y(℃)与开机时间x(分)的函数关系式; (2)求图中t的值;

(3)若小明在通电开机后即外出散步,请你预测小明散步45分钟回到家时,饮水机内的温度约为多少℃?

24.(10分)某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,种植花卉的利润y2与投资量x的平方成正比例关系,并得到了表格中的数据.

投资量x(万元) 种植树木利润y1(万元) 种植花卉利润y2(万元) 2 4 2 (1)分别求出利润y1与y2关于投资量x的函数关系式;

(2)如果这位专业户以8万元资金投入种植花卉和树木,设他投入种植花卉金

第7页(共37页)

额m万元,种植花卉和树木共获利利润W万元,直接写出W关于m的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?

(3)若该专业户想获利不低于22万,在(2)的条件下,直接写出投资种植花卉的金额m的范围.

25.(10分)如图所示,点A为半圆O直径MN所在直线上一点,射线AB垂直于MN,垂足为A,半圆绕M点顺时针转动,转过的角度记作a;设半圆O的半径为R,AM的长度为m,回答下列问题:

探究:(1)若R=2,m=1,如图1,当旋转30°时,圆心O′到射线AB的距离是 ;如图2,当a= °时,半圆O与射线AB相切;

(2)如图3,在(1)的条件下,为了使得半圆O转动30°即能与射线AB相切,在保持线段AM长度不变的条件下,调整半径R的大小,请你求出满足要求的R,并说明理由.

(3)发现:(3)如图4,在0°<α<90°时,为了对任意旋转角都保证半圆O与射线AB能够相切,小明探究了cosα与R、m两个量的关系,请你帮助他直接写出这个关系;cosα= (用含有R、m的代数式表示)

拓展:(4)如图5,若R=m,当半圆弧线与射线AB有两个交点时,α的取值范围是 ,并求出在这个变化过程中阴影部分(弓形)面积的最大值(用m表示)

26.(12分)如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,BD=8cm.点M从点A出发,沿AC的方向匀速运动,同时直线PQ由点B出发,沿BA的方向匀

第8页(共37页)