2017年高考数学(理科)全国Ⅰ卷试卷分析 下载本文

2017年高考数学(理科)全国Ⅰ卷试卷分析

合肥一中 吴建平

1.试卷题型稳定,难、易适中

选择、填空、解答题基本是按照由易到难的顺序排列,数学的几大主要板块进行了重点考查,主要是数列、三角函数、立体几何、概率统计、解析几何、函数导数 以及选考部分参数方程和不等式,试卷结构和往年保持不变,体现了高考的稳定性和延续性,注重基础知识,体现数学素养,考查计算能力,有利于学生的正常发挥。

2.试卷体现了对数学核心素养和数学文化的考查

试卷体现了数学文化,如第2题把几何概型的考查揉合进了我国古代的八卦图中,弘扬了优秀的传统文化,体现了图形的对称美。12题的数学抽象和推理、16题的数学建模、19题的数学应用和数学建模,都是对学生的核心素养进行了很好的考查。

3.体现了基础性和常规性

选择题前11题和填空题前3题都比较基础和常规,解答题的17、18及选考题都是常规的考查,和往年的全国一卷及模考题相类似。体现了通性、通法,学生如有较扎实的基本功和运算能力,解答这些题目应该完全没有问题。

4.体现了综合性、创新性和应用性

如选择题12题考查数列的通项、求和及不等式问题,16题考查了平面图形的折叠、函数模型的建立、锥体体积公式和函数最值的求法。19题数学应用问题贴近生活、贴近学生,

具有浓厚的生活气息,体现了数学和实际的紧密结合,对学生阅读理解、提取信息和数据处理能力要求较高,20题考查运算能力、特殊和一般关系问题,第21题第(1)问要求考生求出导函数的零点,进而对参数进行分类讨论,掌握函数的单调性;在此基础上,第(2)问要求根据函数有两个零点的条件,确定参数的取值范围,试题层层深入,为考生解答提供广阔的想象空间。在知识的交汇点处命题,对学生的理性思维进行了很好的考查。

总之,整份试卷加强对学生理性思维的考查,渗透了数学文化,突出对创新应用能力的考查。试题关注社会发展,引导考生运用所学数学知识解决生活实际问题,富有时代气息。试卷遵循考试大纲的各项规定,试卷结构保持稳定,难易适度,各种难度的试题比例适当。试卷有利于科学选拔人才,有利于深化课程改革,有利于促进社会公平,对培养学生的创新精神、实践能力,提升学生核心素养的数学课程、教学改革都有积极的导向作用。

——基础扎实、减少失误便可成就高分

合肥市第十中学 张庆

2017年全国高考理科数学乙卷在7日下午3点与考生见面,揭开了它的神秘面纱,纵观整张试卷,它遵循了《课程标准》的基本理念,严格贯彻《2017年全国统一高考考试大

纲》基本要求,试卷在稳定中做了一定的创新,重视考查学生的核心数学素养,不仅兼顾知识点、思想方法与能力的考查,也关注了数学的应用意识与创新意识;试卷从中低档题到高档题梯度明显,有良好的区分度。下面我对试题做具体分析,并总结特点,不妥之处,敬请批评指正。

一、试题分析

(1)选择题总结:从难度上来看,第1-4题和第8题属于简单题,基本都是单一知识点的考察;5、6、7、9、10、11属于中等题,是考察对于知识的灵活应用;第12题为较难题,以破译激活码为背景,考查与等比数列求和有关问题,需要学生正确理解分析问题,掌握综合知识以及灵活应用。从内容上来看,简单题主要包含:集合、几何概型、复数、等差数列、程序框图等;中等题主要包括利用函数性质解不等式、二项式定理、空间几何体三视图侧面积、三角函数图像及变换、抛物线焦点弦最值、指对数互化与利用函数性质比较大小等;较难题为等比数列求和有关问题。

(2)填空题总结:第13和14题属于容易题,考查向量模的计算,第15题为中等题,考察双曲线和圆,需要知识的灵活应用;第16为较难题,考查平面几何中的折叠问题,需要学生正确分析问题,掌握综合知识以及灵活应用。

(3)解答题总结:从内容上来看,由于今年考试大纲删除了几何证明选讲,所以选考题的内容是参数方程与坐标系、不等式的二选一,其中22题侧重考查参数方程和普通方程互化,椭圆参数方程应用,不等式考查不等式求解,恒成立求参数范围,均属于常见题型;必考题目包含:解三角形、立体几何、概率统计、解析几何、导数及其应用。从难度上来看,17-19属于中等题,是考察对于知识的灵活应用(包含概率统计、立体几何、解三角形);