小学数学人教版五年级上册在方格纸上用数对确定物体的位置:说课稿 下载本文

小学数学人教版五年级上册

在方格纸上用数对确定物体位置说课稿

一、 说教材。

1. 本节课是在学生已经学会用数对确定物体位置的基础上学习的。通过呈现在动物园示意图上确定各场馆位置的情景,把用数对表示位置的实际问题抽象成用数对表示平面上点的位置的数学问题,使学生明确如何在方格纸上用数对确定点的位置。

2.其次是学情分析:

学生在之前已经学习过用“第几组第几个”的方式来描述实际情境中物体的位置,并且在生活中也有许多类似的经验,但是学生对物体位置的描述还没有形成特定的规范。因此,在教学“用数对确定位置”时应充分利用这些经验和知识为学生提供探究的空间,让学生通过观察、分析、独立思考、合作交流等方式,将用生活经验描述位置上升为用数学方法来确定位置,发展学生的数学思考,培养其空间观念和意识。

3.基于以上认识,结合课标的要求,我制定本节课的教学目标为:

知识技能:结合具体情境认识行与列,初步理解数对的含义,能在具体情境中用数对表示物体的位置,并能在方格图上用数对表示点的位置。

数学思考:学生经历由具体的座位图到抽象成用列、行表示平面图的过程,提高学生的抽象思维能力,发展空间观念。

问题解决:在解决问题的过程中,渗透“数形结合”的思想,培养学生的观察能力。 情感态度:感受方向和位置与现实生活的联系,培养学生参与数学活动的兴趣。 4、我根据本节课的教学内容及目标要求将本节课的教学重点定位为探索确定位置的方法,能在方格纸上用“数对”确定位置。难点是正确地用数对描述物体的具体位置。充分利用“数形结合”的方法,把具体实物图形抽象为直观的点子图、方格图,是本节课突破重点和难点的关键。

二、说教法和学法:

在生活中有很多数学问题,引导学生从生活中发现问题,归纳问题的共同特点,从而建立数学模型是设计本课的一个重要指导思想。五年级学生与中低年级的学生相比,他们在动手操作、观察比较等方面能力更强。想象的有意性迅速增长并逐渐符合客观现实,同时,创造性成分日益增多。基于以上的认识,我在本节课主要采用一下几种教学方法:

(1)情境教学法:以教材的情境设计为依托,结合学生自身的生活经验为学生创设问

题情境,引起学生对数对学习关注,激发学生学习的兴趣和问题意识。

(2)数形结合法:把抽象的知识与具体的图形联系起来,使图形更加直观,从而有效降低教学的难度,加深学生对数对的理解和认识。

(3)合作学习法:在独立思考和自主探索的基础上,进行小组间的合作与交流,为每位学生提供从事数学活动机会,帮助学生在多元交流中真正理解和掌握知识。

三、说教学过程:围绕这3个基本目标及教学重点、难点,为了达到预期的教学目标,同时遵循学生的认知心理特点我设计以下4个教学环节。

一、导入新课

1.复习:上节课咱们学习了用数对来表示物体的位置,谁来说一说数对中的第一个数字表示什么,第二个数字表示什么?

(数对中的第一个数字表示“列”,第二个数字表示“行”。)

2.导入:(出示如下示意图)那么,今天我们继续来学可数对的知识,先来看下面的示意图,你们能用数对分别表示出各场馆的位置吗?

熊猫馆 大象馆 猴山 大门 海洋馆 引导学生用数对分别表示出各场馆所在的位置。 指学生回答,并说一说是怎么确定它们的位置的。 二、新课学习

1.出示教材第20页“动物园示意图”。

(1)引导学生观察图,并比较它和刚才的示意图有什么不同。

引导学生理解图意:横排和竖排所构成的区域是整个动物园的范围。动物园的各场馆都画成一个点,这些点都分散在方格纸竖线与横线的交点上。

(2)提出问题:图上的数字表示什么?

引导学生理解:纵向排列的数字表示行,从下往上数;横向排列的数字表示列,从左往右数。图上的数字表明行和列的起点均为O。

(3)引导学生观察这幅方格图,问:你能用数对表示出大门的位置吗? 指生回答:大门(3,O)。

组织同桌互相说一说其他场馆的位置。 小组互相交流、探讨,教师进行相应的指导。 集体订正,并用多媒体出示各场馆的位置:

大象馆(1,4)猴山(2,2) 大门(3,O) 熊猫馆(3,5)海洋馆(6,4)

2.指生到黑板指一指下面场馆的位置:飞禽馆(1,1)、猩猩馆(O,3)、狮虎山(4,3)。 并说说自己是怎样标出各个场馆的位置的。

引导学生回答:飞禽馆(1,1)是在第一列第一行,猩猩馆是(1,3)在最左边一列第3行,狮虎山是(4,3)在第四列第三行。

3.拓展延伸。

(l)引导学生分别观察飞禽馆、大象馆以及猩猩馆和狮虎山在图中的位置和表示它们位置的数对,你有什么发现?

引导学生说出:大象馆和飞禽馆在同一列,它们的数对第一个数相同;猩猩馆和狮虎山在同一行,它们的数对第二个数相同。

师小结:表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。

(2)质疑:如果用(x ,4)表示某场馆的位置,能确定在哪里吗? 小组交流,并指生汇报。

教师引导学生总结:由于字母表示的数不确定,所以这样的数对只能确定这个场馆在哪一条横线上,但不能确定这个场馆的具体位置,使学生明确必须要有两个数才能确定一个位置。

4.找生活中的数对。

用数对表示位置在生活中有着广泛的应用,你能举出例子吗? 小组讨论交流,如:地球仪上的经纬网、十字绣、围棋棋谱等。 三、结论总结

师:同学们,这节课你们都学会了哪些知识? 生1:1.学会了用数对表示位置。