中介作用于调节作用:原理与应用 下载本文

执行完程序,会出现输出文件。在输出文件中包括该中介模型的估计值,包括所有中介变量的总中介效应、每一个中介变量在控制其它中介路径时的中介效应、直接中介效应和间接中介效应。如果置信区间不包括0,那么中介作用显著,支持中介效应的假设; 如果包括0,则不显著,不支持中介效应的假设。

特定路径的中介效应(specific mediationeffect),如a1b1、a2b2和a1a3b2;总的中介效应(total mediation effect),即a1b1+a2b2 +a1a3b2;对比中介效应,如a1a3b2-a2b2、a1b1-a2b2和a1a3b2-a1b1。

变量2 变量1 变量3 变量4

结果输出

3调节效应的分析

调节效应分析和交互效应分析大同小异。这里分两大类进行讨论。一类是所涉及的变量(因变量、自变量和调节变量)都是可以直接观测的显变量,另一类是所涉及的变量中至少有一个是潜变量。

3.1显变量的调节效应分析方法

调节效应分析方法根据自变量和调节变量的测量级别而定。变量可分为两类,一类是类别变量(categoricalvariable),包括定类和定序变量,另一类是连续变量(continuous variable),包括定距和定比变量。

第一,当自变量和调节变量都是连续变量时,用带有乘积项的回归模型,做层次回归分析:第一步做Y对X和M的回归,得测定系数R21;第二步做Y对X、M和XM的回归得R22 (此处是分三步按层次移入变量,不是一次将自变量和调节变量移入,这是很多人容易范的错误),若R22 显著高于R21,则调节效应显著;或者,做XM 的偏回归系数检验,若显著,则调节效应显著。

第二,当自变量和调节变量都是类别变量时做方差分析。

第三,当调节变量是类别变量、自变量是连续变量时,做分组回归分析,或将调节变量转化为虚拟变量做层次回归分析。分类的调节变量转换为虚拟变量进行层次回归分析后,调节效应是看方程的决定系数R显著性整体效果,这和不同分类水平的自变量下调节变量的调节效应识别有区别。

第四,当自变量是类别变量、调节变量是连续变量时,不能做分组回归,而是将自变量重新编码成为虚拟变量(dummy variable),用带有乘积项的回归模型,做层次回归分析。

需要说明的是,除非已知X和M不相关(即相关系数为零),否则调节效应模型不能看标准化解。这是因为,即使X和M的均值都是零,XM 的均值一般说来也不是零。

2

简单调节效应概念图 简单调节效应模型图

3.1.1当自变量和调节变量都是连续变量时,做层次回归分析 (1)分层回归法(目前仍是主流) 操作步骤:

第一步,所有变量做中心化处理,并生成X和M的交互项,即变量1×变量2的交互项; 第二步,做Y对X和M的回归,得测定系数R21,即变量3对变量1和变量2的回归; 第三步,做Y对X、M和XM的回归得R22,若R22显著高于R21,则调节效应显著;或者,做XM的偏回归系数检验,若显著,则调节效应显著,即做变量3对变量1、变量2和变量1×变量2的交互项的回归。

操作演示:

第一步,中心化操作,首先求得三个显变量的均值,其次在spss转化→计算中使用变量1-均值、变量2-均值、变量3-均值,获得新的三列中心化处理后的变量;通过转化→计算产生交互项。

中心化操作