2017中考数学一轮复习教案完整版 下载本文

第3课 整式

知识点

代数式、代数式的值、整式、同类项、合并同类项、去括号与去括号法则、幂的运算法则、整式的加减乘除乘方运算法则、乘法公式、正整数指数幂、零指数幂、负整数指数幂。 大纲要求

1、 了解代数式的概念,会列简单的代数式。理解代数式的值的概念,能正确地求出代数式

的值;

2、 理解整式、单项式、多项式的概念,会把多项式按字母的降幂(或升幂)排列,理解同

类项的概念,会合并同类项;

3、 掌握同底数幂的乘法和除法、幂的乘方和积的乘方运算法则,并能熟练地进行数字指数

幂的运算;

2

4、 能熟练地运用乘法公式(平方差公式,完全平方公式及(x+a)(x+b)=x+(a+b)x+ab)进

行运算;

5、 掌握整式的加减乘除乘方运算,会进行整式的加减乘除乘方的简单混合运算。 考查重点

1.代数式的有关概念.

(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.

(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果p叫做代数式的值. 求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.

(3)代数式的分类 2.整式的有关概念

(1)单项式:只含有数与字母的积的代数式叫做单项式.

对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。

(2)多项式:几个单项式的和,叫做多项式

对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析

(3)多项式的降幂排列与升幂排列

把一个多项式技某一个字母的指数从大列小的顺序排列起来,叫做把这个多项式按这个字母降幂排列

把—个多项式按某一个字母的指数从小到大的顺斤排列起来,叫做把这个多项式技这个字母升幂排列,

给出一个多项式,要会根据要求对它进行降幂排列或升幂排列. (4)同类项

所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷.

要会判断给出的项是否同类项,知道同类项可以合并.即ax?bx?(a?b)x 其中的X可以代表单项式中的字母部分,代表其他式子。 3.整式的运算 (1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一般步骤是:

9

(i)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。括号里各项都不变符号,括号前是“一”号,把括号和它前面的“一”号去掉.括号里各项都改变符号. (ii)合并同类项: 同类项的系数相加,所得的结果作为系数.字母和字母的指数不变. (2)整式的乘除:单项式相乘(除),把它们的系数、相同字母分别相乘(除),对于只在一个单项式(被除式)里含有的字母,则连同它的指数作为积(商)的一个因式相同字母相乘(除)要用到同底数幂的运算性质:

am?an?am?n(m,n是整数)a?a?amnm?n(a?0,m,n是整数)

多项式乘(除)以单项式,先把这个多项式的每一项乘(除)以这个单项式,再把所得的积(商)相加.

多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.

遇到特殊形式的多项式乘法,还可以直接算:

(x?a)(x?b)?x2?(a?b)x?ab,

(a?b)(a?b)?a2?b2,(a?b)?a?2ab?b,(a?b)(a2?ab?b2)?a3?b3.22

(3)整式的乘方

单项式乘方,把系数乘方,作为结果的系数,再把乘方的次数与字母的指数分别相乘所得的幂作为结果的因式。

单项式的乘方要用到幂的乘方性质与积的乘方性质:

(am)n?amn(m,n是整数),(ab)?ab(n是整数)nnn

多项式的乘方只涉及

(a?b)2?a2?2ab?b2,(a?b?c)?a?b?c?2ab?2bc?2ca.2222

考查重点与常见题型

1、 考查列代数式的能力。题型多为选择题,如: 下列各题中,所列代数错误的是( )

(A) 表示“比a与b的积的2倍小5的数”的代数式是2ab-5 1

(B) 表示“a与b的平方差的倒数”的代数式是2

a-b(C) 表示“被5除商是a,余数是2的数”的代数式是5a+2 a

(D) 表示“数的一半与数的3倍的差”的代数式是 -3b

2

2、 考查整数指数幂的运算、零指数。题型多为选择题,在实数运算中也有出现,如: 下列各式中,正确的是( )

336326336326

(A)a+a=a (B)(3a)=6a (C)a?a=a (D)(a)=a 整式的运算,题型多样,常见的填空、选择、化简等都有。

10

考查题型:

1.下列各题中,所列代数错误的是( )

(E) 表示“比a与b的积的2倍小5的数”的代数式是2ab-5 1

(F) 表示“a与b的平方差的倒数”的代数式是2

a-b(G) 表示“被5除商是a,余数是2的数”的代数式是5a+2 a

(H) 表示“数a的一半与数b的3倍的差”的代数式是 -3b

2

2.下列各式中,正确的是( )

336326336326

(A)a+a=a (B)(3a)=6a (C)a?a=a (D)(a)=a 3.用代数式表示:(1)a的绝对值的相反数与b的和的倒数;

(2)x平方与y的和的平方减去x平方与y的立方的差; лab4.- 的系数是 ,是 次单项式;

12

5.多项式3x-1-6x-4x是 次 项式,其中最高次项是 ,常数项是 ,三次项系数是 ,按x的降幂排列 ;

7xy+72-4y2x

6.如果3mn和-4mn是同类项,则x= ,y= ;这两个单项式的积是__。 7.下列运算结果正确的是( )

3235213633-2-1

①2x-x=x ②x?(x)=x ③(-x)÷(-x)=x ④(0.1)?10=10 (A)①② (B)②④ (C)②③ (D)②③④ 考查训练:

11xyx+y

1、代数式a-1,0, ,x+ ,- ,m, ,2 –3b中单项式是 ,多项

3ay42

2

2

2

5

3

23

式是 ,分式是 。 xyz

2、- 是 次单项式,它的系数是 。

3

3、多项式3yx-1-6yx-4yx是 次 项式,其中最高次项是 ,常数项是 ,三次项系数是 ,按x的降幂排列为 。

4、已知梯形的上底为4a-3b,下底为2a+b,高为3a+b。试用含a,b的代数式表示出梯形的面积,并求出当a=5,b=3时梯形的面积。 5、下列计算中错误的是( )

3223982332333

(A)(-ab)·(-ab)=-ab (B) (-ab)÷(-ab)=ab

322366322331818

(C)(-a)·(-b)=ab (D)[(-a)·(-b)]=-ab 13412323

6、计算:3xy·(- xy)÷(- xy)

26

322

7.已知代数式3y-2y+6的值为8,求代数式 y-y+1的值

2a+b

8.设a-b=-2,求 -ab的值。

27、利用公式计算:

2

2

2

25

3

2

3

1211121221212

(1) ( a- b)( - b- a) (2) (a- ) (a+ )(a+ )

3443242

22

(3)(x+y-z)(x-y+z)-(x+y+z)(x-y-z) (4)[(x+6x+9) ÷(x+3)](x-3x+9)

11

222

(5)(a-4)(a-2a+4)(a+2a+4) (6)101×99 解题指导:

15 -2x

1、代数式 是( )

3

(A)整式 (B)分式 (C)单项式 (D)无理式

7-mn+31-4m2n

2、如果3xy和-4xy是同类项,那么m,n的值是( )

(A)m=-3,n=2 (B) m=2,n=-3 (C) m=-2,n=3 (D) m=3,n=-2 12

3、正确叙述代数式 (2a-b)的是( )

3(A) a与2的积减去b平方与3的商 (B)a与2的积减去b的平方的差除以3

11

(C)a与2倍减去b平方的差的 (D)a的2倍减去b平方 33

4、用乘法公式计算:

22222

(1) (-2a-3b) (2) (a-3b+2c) (3) (2y-z)[2y(z+2y)+z]

5、计算:

222

(1)(c-2b+3a)(2b+c-3a) (2)(a-b)(a+b)-2ab(a-b)

3242

6、用竖式计算: (5-4x+5x+2x)÷(3+x-2x)

322

7、已知6x-9x+mx+n能被6x-x+4整除,求m,n的值,并写出被除式。

222

8、已知x+y=4,xy=3,求:3x+3y;(x-y)

巩固提高

23443

1、 若一个多项式加上2x-x-5-3x得3x-5x-3,则这个多项式是 ;

n2

2、 若3x-(m-1)x+1为三次二项式,则m-n的值为 ;

3、 用代数式表示,m,n两数的和除这两数的平方的差 ; x-3

用语言叙述代数式 ;

6

4.若除式=x+2,商式=2x+1,余式=-5,则被除式= ;

33

5、当x=-2时,ax+bx-7=5,则x=2时,ax+bx-7= ;

2

a-b=-2,a-c=-3,则(b-c)-3(b-c)+1=

2

6、如果(a+b-x)的结果中不含的x一次项,那么a,b必满足( ) (A) a=b (B)a=0,b=0 (C)a=-b (D)以上都不对 7、-[a-(b-c)]去括号正确的是( )

(A) -a-b+c (B)-a+b-c (C)-a-b-c (D)-a+b+c

8、设P是关于x的五次多项式,Q是关于x的三次多项式,则( ) (A)P+Q是关于的八次多项式 (B)P-Q是关于的二次多项式 Q

(C)P·Q是关于的八次多项式 (D) 是关于的二次多项式

P9.下列计算中正确的是( )

12

32