人教版七年级上期末动点问题专题(附答案) 下载本文

七年级上期末动点问题专题

1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)=0,A、B之间的距离记作AB,定义:AB=|a﹣b|.

(1)求线段AB的长.

(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.

(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM﹣PN|的值不变.

2.如图1,已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上的一动点,其对应的数为x.

2

(1)PA= _________ ;PB= _________ (用含x的式子表示)

(2)在数轴上是否存在点P,使PA+PB=5?若存在,请求出x的值;若不存在,请说明理由.

(3)如图2,点P以1个单位/s的速度从点D向右运动,同时点A以5个单位/s的速度向左运动,点B以20个单位/s的速度向右运动,在运动过程中,M、N分别是AP、OB的中点,问:

3.如图1,直线AB上有一点P,点M、N分别为线段PA、PB的中点,

的值是否发生变化?请说明理由.

AB=14.

(1)若点P在线段AB上,且AP=8,求线段MN的长度;

(2)若点P在直线AB上运动,试说明线段MN的长度与点P在直线AB上的位置无关; (3)如图2,若点C为线段AB的中点,点P在线段AB的延长线上,下列结论:①

的值不变;②

值不变,请选择一个正确的结论并求其值.

4.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)

(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:

(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求

的值.

(3)在(1)的条件下,若C、D运动5秒后,恰好有

,此时C点停止运动,D点继续运动(D点在线段PB

的值不变,可以说明,只有一个结论是正

上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②确的,请你找出正确的结论并求值.

5.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200.

(1)若BC=300,求点A对应的数;

(2)如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形);

(3)如图3,在(1)的条件下,若点E、D对应的数分别为﹣800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QC﹣AM的值是否发生变化?若不变,求其值;若不变,请说明理由.

6.如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点. (1)如图1,若CF=2,则BE= _________ ,若CF=m,BE与CF的数量关系是

(2)当点E沿直线l向左运动至图2的位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由. (3)如图3,在(2)的条件下,在线段BE上,是否存在点D,使得BD=7,且DF=3DE?若存在,请求出若不存在,请说明理由.

值;

7.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上) (1)若AB=10cm,当点C、D运动了2s,求AC+MD的值.

(2)若点C、D运动时,总有MD=3AC,直接填空:AM= _________ AB. (3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求

的值.

8.已知数轴上三点M,O,N对应的数分别为﹣3,0,1,点P为数轴上任意一点,其对应的数为x. (1)如果点P到点M,点N的距离相等,那么x的值是 _________ ;

(2)数轴上是否存在点P,使点P到点M,点N的距离之和是5?若存在,请直接写出x的值;若不存在,请说明理由. (3)如果点P以每分钟3个单位长度的速度从点O向左运动时,点M和点N分别以每分钟1个单位长度和每分钟4个单位长度的速度也向左运动,且三点同时出发,那么几分钟时点P到点M,点N的距离相等?

9.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.

(1)写出数轴上点B表示的数 _________ ,点P表示的数 _________ 用含t的代数式表示);

(2)动点R从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少秒时追上点R?

(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;

10.如图,已知数轴上点A表示的数为6,B是数轴上一点,且AB=10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.

(1)①写出数轴上点B表示的数 _________ ,点P表示的数 _________ (用含t的代数式表示);

②M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;

(2)动点Q从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动;动点R从点B出发,以每秒个单位长度的速度沿数轴向左匀速运动,若P、Q、R三动点同时出发,当点P遇到点R时,立即返回向点Q运动,遇到点Q后则停止运动.那么点P从开始运动到停止运动,行驶的路程是多少个单位长度?

参考答案与试题解析

一.解答题(共10小题)

1.已知点A在数轴上对应的数为a,点B对应的数为b,且|2b﹣6|+(a+1)=0,A、B之间的距离记作AB,定义:AB=|a﹣b|.

(1)求线段AB的长.

(2)设点P在数轴上对应的数x,当PA﹣PB=2时,求x的值.

(3)M、N分别是PA、PB的中点,当P移动时,指出当下列结论分别成立时,x的取值范围,并说明理由:①PM÷PN的值不变,②|PM﹣PN|的值不变. 考点: 一元一次方程的应用;数轴;两点间的距离. 分析: (1)根据非负数的和为0,各项都为0; (2)应考虑到A、B、P三点之间的位置关系的多种可能解题; (3)利用中点性质转化线段之间的倍分关系得出. 2解答: 解:(1)∵|2b﹣6|+(a+1)=0, ∴a=﹣1,b=3, ∴AB=|a﹣b|=4,即线段AB的长度为4. (2)当P在点A左侧时, |PA|﹣|PB|=﹣(|PB|﹣|PA|)=﹣|AB|=﹣4≠2. 当P在点B右侧时, |PA|﹣|PB|=|AB|=4≠2. ∴上述两种情况的点P不存在. 当P在A、B之间时,﹣1≤x≤3, ∵|PA|=|x+1|=x+1,|PB|=|x﹣3|=3﹣x, ∴|PA|﹣|PB|=2,∴x+1﹣(3﹣x)=2. ∴解得:x=2; 2

(3)由已知可得出:PM=PA,PN=PB, 当①PM÷PN的值不变时,PM÷PN=PA÷PB. ②|PM﹣PN|的值不变成立. 故当P在线段AB上时, PM+PN=(PA+PB)=AB=2, 当P在AB延长线上或BA延长线上时, |PM﹣PN|=|PA﹣PB|=|AB|=2. 点评: 此题主要考查了一元一次方程的应用,渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解. 利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.