SAS学习系列40. 时间序列分析Ⅳ—GARCH模型 下载本文

.

40. 时间序列分析Ⅲ—GARCH模型

(一)GRACH模型

即自回归条件异方差模型,是金融市场中广泛应用的一种特殊非线性模型。

1982年,R.Engle在研究英国通货膨胀率序列规律时提出ARCH模型,其核心思想是残差项的条件方差依赖于它的前期值的大小。

1986年,Bollerslev在ARCH模型基础上对方差的表现形式进行了线性扩展,并形成了更为广泛的GARCH模型。

一、金融时间序列的异方差性特征

金融时间序列,无恒定均值(非平稳性),呈现出阶段性的相对平稳的同时,往往伴随着出现剧烈的波动性;具有明显的异方差(方差随时间变化而变化)特征:

尖峰厚尾:金融资产收益呈现厚尾和在均值处呈现过度波峰; 波动丛聚性:金融市场波动往往呈现簇状倾向,即波动的当期水平往往与它最近的前些时期水平存在正相关关系。

杠杆效应:指价格大幅度下降后往往会出现同样幅度价格上升的倾向。

Word文档资料

.

因此,传统线性结构模型(以及时间序列模型)并不能很好地解释金融时间序列数据。 二、ARCH(p)模型

考虑k变量的回归模型

yt??0??1x1t?L??kxkt??t

若残差项?t的均值为0,对yt取基于t-1时刻信息的期望:

Et?1(yt)??0??1x1t?L??kxkt

该模型中,yt的无条件方差是固定的。但考虑yt的条件方差:

var(yt|Yt?1)?Et?1(yt??0??1x1t?L??kxkt)2?Et?1?t2

其中,var(yt|Yt?1)表示基于t-1时刻信息集合Yt-1的yt的条件方差,若残差项?t存在自回归结构,则yt的条件方差不固定。

假设在前p期所有信息的条件下,残差项平方?t2服从AR(p)模型:

?t2????1?t2?1?L??p?t2?p??t (*)

其中?t为0均值、??2方差的白噪声序列。则残差项?t服从条件正态分布:

Word文档资料

.

?t~N?0,???1?t2?1?L??p?t2?p?

残差项?t的条件方差:

var(?t)??t2????1?t2?1?L??p?t2?p

由两部分组成:

(1)常数项?;

(2)ARCH项——变动信息,前p期的残差平方和??i?t2?i

i?1p注:未知参数?0,?1,L,?p和?0,?1,L,?k利用极大似然估计法估计。

方差非负性要求?0,?1,L,?p都非负。为了使?t2协方差平稳,需进一步要求方程

1??1z?L??pzp?0

的根都位于单位圆外。若?i都非负,上式等价于?1?L??p?1.

注:若扰动项的条件方差不存在自相关,则有?1?L??p?0,此时var(?t)??0,即残差的条件方差同方差性情形。

三、GARCH(p,q)模型

ARCH(p)模型在实际应用中,为了得到较好的拟合效果,往往需要很大的阶数p,从而增加了待估参数个数、引发多重共线性、非限制估计违背?i非负性要求。

1986年,Bollerslev将ARCH(p)模型推广为广义自回归条件异方差模型GARCH(p, q):残差?t的条件方差表示为

Word文档资料