初一数学相交线和平行线探究题(附答案解析) 下载本文

初一数学相交线和平行线探究题

1.AB∥CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合).∠ABC=n°,∠ADC=80°.

(1)若点B在点A的左侧,求∠BED的度数(用含n的代数式表示);

(2)将(1)中的线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠BED的度数是否改变.若改变,请求出∠BED的度数(用含n的代数式表示);若不变,请说明理由. 2.已知:如图①、②,解答下面各题:

(1)图①中,∠AOB=55°,点P在∠AOB内部,过点P作PE⊥OA,PF⊥OB,垂足分别为E、F,求∠EPF的度数。

(2)图②中,点P在∠AOB外部,过点P作PE⊥OA,PF⊥OB,垂足分别为E、F,那么∠P与∠O有什么关系?为什么?

(3)通过上面这两道题,你能说出如果一个角的两边分别垂直于另一个角的两边,则这两个角是什么关系?

(4)如果一个角的两边分别平行于另一个角的两边,则这两个角是什么关系?(请画图说明结果,不需要过程)

3.如图,射线OA∥射线CB,∠C=∠OAB=100°.点D、E在线段CB上,且∠DOB=∠BOA, OE平分∠DOC.

(1)试说明AB∥OC的理由; (2)试求∠BOE的度数; (3)平移线段AB;

①试问∠OBC:∠ODC的值是否会发生变化?若不会,请求出这个比值;若会,请找出相应变化规律. ②若在平移过程中存在某种情况使得∠OEC=∠OBA,试求此时∠OEC的度数. 4. (1)①如图1,已知AB∥CD,∠ABC=60°,可得∠BCD=_______°;

②如图2,在①的条件下,如果CM平分∠BCD,则∠BCM=_________°; ③如图3,在①、②的条件下,如果CN⊥CM,则∠BCN=___________°.

(2)、尝试解决下面问题:已知如图4,AB∥CD,∠B=40°,CN是∠BCE的平分线, CN⊥CM,求∠BCM的度数.

5.已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC和CB的延长线于点D,E,F.

(1)求证:∠F+∠FEC=2∠A;

(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论. 6.如图,已知直线l1∥l2,直线l3和直线l1、l2交于C、D两点,点P在直线CD上.

(1)试写出图1中∠APB、∠PAC、∠PBD之间的关系,并说明理由;

(2)如果P点在C、D之间运动时,∠APB,∠PAC,∠PBD之间的关系会发生变化吗? 答: .(填发生或不发生); (3)若点P在C、D两点的外侧运动时(P点与点C、D不重合,如图2、图3),试分别写出∠APB,∠PAC,∠PBD之间的关系,并说明理由. 7.(8分)如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.

(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;

(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;

(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明; (4)若点P在C、D两点外侧运动时,请直接写出∠1、∠2、∠3之间的关系. 8.(1)已知:如图1,直线AC∥BD,求证:∠APB=∠PAC+∠PBD;

(2)如图2,如果点P在AC与BD之内,线段AB的左侧,其它条件不变,那么会有什么结果?并加以证明;

(3)如图3,如果点P在AC与BD之外,其他条件不变,你发现的结果是 (只写结果,不要证明).

9.平面内的两条直线有相交和平行两种位置关系

(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;

(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B