答:表面强化处理可在机件表面产生有利的残余压应力,同时还能提高机件表面的强度和硬度。这两方面的作用都能提高疲劳强度。
表面强化方法,通常有表面喷丸、滚压、表面淬火及表面化学热处理等。 (1) 表面喷丸及滚压
喷丸是用压缩空气将坚硬的小弹丸高速喷打向机件表面,使机件表面产生局部形变硬化;同时因塑变层周围的弹性约束,又在塑变层内产生残余压应力。
表面滚压和喷丸的作用相似,只是其压应力层深度较大,很适于大工件;而且表面粗糙度低,强化效果更好。
(2) 表面热处理及化学热处理
他们除能使机件获得表硬心韧的综合力学性能外,还可以利用表面组织相变及组织应力、热应力变化,使机件表面层获得高强度和残余压应力,更有效地提高机件疲劳强度和疲劳寿命。 13.试述金属的硬化与软化现象及产生条件。 金属材料在恒定应变范围循环作用下,随循环周次增加其应力不断增加,即为循环硬化。 金属材料在恒定应变范围循环作用下,随循环周
次增加其应力逐渐减小,即为循环软化。 金属材料产生循环硬化与软化取决于材料的初始状态、结构特性以及应变幅和温度等。 循环硬化和软化与σb / σs有关: σb / σs>1.4,表现为循环硬化; σb / σs<1.2,表现为循环软化;
1.2<σb / σs<1.4,材料比较稳定,无明显循环硬化和软化现象。
也可用应变硬化指数n来判断循环应变对材料的影响,n<1软化,n>1硬化。
退火状态的塑性材料往往表现为循环硬化,加工硬化的材料表现为循环软化。 循环硬化和软化与位错的运动有关:
退火软金属中,位错产生交互作用,运动阻力增大而硬化。
冷加工后的金属中,有位错缠结,在循环应力下破坏,阻力变小而软化。
第六章 金属的应力腐蚀和氢脆断裂
一、名词解释
1、应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后所产生的 低应力脆断现象。
2、氢脆:由于氢和应力共同作用而导致的金属材料产生脆性断裂的现象。
3、白点:当钢中含有过量的氢时,随着温度降低氢在钢中的溶解度减小。如果过饱和的氢未能扩散逸出,便聚集在某些缺陷处而形成氢分子。此时,氢的体积发生急剧膨胀,内压力很大足以将金属局部撕裂,而形成微裂纹。
4、氢化物致脆:对于ⅣB 或ⅤB 族金属,由于它们与氢有较大的亲和力,极易生成脆性氢化物,是金属脆化,这种现象称氢化物致脆。 二、说明下列力学性能指标的意义
1、σscc:材料不发生应力腐蚀的临界应力。 2、KIscc:应力腐蚀临界应力场强度因子。 3、da/dt:盈利腐蚀列纹扩展速率。 7.如何识别氢脆与应力腐蚀?。
答:氢脆和应力腐蚀相比,其特点表现在: 1、实验室中识别氢脆与应力腐蚀的一种办法是,当施加一小的阳极电流,如使开裂加速,则为应力腐蚀;而当施加一小的阴极电流,使开裂加速者则为氢脆。
2、在强度较低的材料中,或者虽为高强度材料但受力不大,存在的残余拉应力也较小这时其断
裂源都不在表面,而是在表面以下的某一深度,此处三向拉应力最大,氢浓集在这里造成断裂。 3、氢脆断裂的主裂纹没有分枝的悄况.这和应力腐蚀的裂纹是截然不同的。
4、氦脆断口上一般没有腐蚀产物或者其量极微。 5、大多数的氢脆断裂(氢化物的氢脆除外),都表现出对温度和形变速率有强烈的依赖关系。氢脆只在一定的温度范围内出现,出现氢脆的温度区间决定于合金的化学成分和形变速率。
第七章 金属的磨损与耐磨性
1.名词解释
磨损:机件表面相互接触并产生相对运动,表面逐渐有微小颗粒分离出来形成磨屑,使表面材料逐渐损失、造成表面损伤的现象。
接触疲劳:两接触面做滚动或滚动加滑动摩擦时,在交变接触压应力长期作用下,材料表面因疲劳损伤,导致局部区域产生小片金属剥落而使材料损失的现象。【P153】
第八章 金属高温力学性能
蠕变:在长时间的恒温、恒载荷作用下缓慢地产生塑性变形的现象。
等强温度(TE):晶粒强度与晶界强度相等的温
度。
蠕变极限:在高温长时间载荷作用下不致产生过量塑性变形的抗力指标。 该指标与常温下的屈服强度相似。
一、和常温下力学性能相比,金属材料在高温下的力学行为有哪些特点?
答案:1、首先,材料在高温将发生蠕变现象。材料在高温下不仅强度降低,而且塑性也降 低。应变速率越低,载荷作用时间越长,塑性降低得越显著。 2、高温应力松弛。
3、产生疲劳损伤,使高温疲劳强度下降。 二、提高材料的蠕变抗力有哪些途径? 答案:加入的合金元素阻止刃位错的攀移,以及阻止空位的形成与运动从而阻止其扩散。
第九章 陶瓷材料的力学性能 银纹:非晶态聚合物的某些薄弱区,因拉应力塑性变形,在其表面和内部出现闪亮的、细长形的“类裂纹”----银纹。
玻璃态:温度低于玻璃化温度时,聚合物所处于的状态即为玻璃态。 第十章