5-1-4-1.幻方(一)
教学目标
1. 会用罗伯法填奇数阶幻方 2. 了解偶数阶幻方相关知识点 3. 深入学习三阶幻方
知识点拨
一、幻方起源
也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:
438951276
我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.
二、幻方定义
幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的3?3的数阵称作三阶幻方,4?4的数阵称作四阶幻方,5?5的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,
183415967215146749516128101132
13
三、解决这幻方常用的方法
⑴适用于所有奇数阶幻方的填法有罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.
⑵适用于三阶幻方的三大法则有: ①求幻和: 所有数的和÷行数(或列数)
②求中心数:我们把幻方中对角线交点的数叫“中心数”,中心数=幻和÷3. ③角上的数=与它不同行、不同列、不同对角线的两数和÷2.
四、数独
数独简介:(日语:数独 すうどく)是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数学智力拼图游戏。如今数独的雏型首先于1970年代由美国的一家数学逻辑游戏杂志发表,当时名为Number Place。现今流行的数独于1984年由日本游戏杂志《パズル通信ニコリ》发表并得了现时的名称。数独本是“独立的数字”的省略,因为每一个方格都填上一个个位数。 数独可以简单的数为:让行与列及单元格的数字成规律性变换的一类数字谜问题
解题技巧:数独游戏中最常规的办法就是利用每一个空格所在的三个单元中已经出现的数字(大小数独一个空格只位于两个单元之内,但是同时多了一个大小关系作为限制条件)来缩小可选数字的范围。 总结4个小技巧: 1、 巧选突破口:数独中未知的空格数目很多,如何寻找突破口呢?首先我们要通过规则的限制来分析
每一个空格的可选数字的个数,然后选择可选数字最少的方格开始,一般来说,我们会选择所在行、所在列和所在九宫格中已知数字比较多的方格开始,尽可能确定方格中的数字;而大小数独中已知的数字往往非常少,这个时候大小关系更加重要,我们除了利用已知数字之外更加需要考虑大小关系的限制。
2、 相对不确定法:有的时候我们不能确定2个方格中的数字,却可以确定同一单元其他方格中肯定不
会出现什么数字,这个就是我们说的相对不确定法。举例说明,A1可以填入1或者2,A2也可以填入1或者2,那么我们可以确定,1和2必定出现在A1和A2两者之中,A行其他位置不可能出现1或者2.
3、 相对排除法:某一单元中出现好几个空格无法确定,但是我们可以通过比较这几个空格的可选数字
进行对比分析来确定它们中的某一个或者几个空格。举例说明,A行中已经确定5个数字,还有4个数字(我们假设是1、2、3、4)没有填入,通过这4个空格所在的其他单元我们知道A1可以填入1、2、3、4,A2可以填入1、3,A3可以填入1、2、3,A4可以填入1、3,这个时候我们可以分析,数字4只能填入A1中,所以A1可以确定填入4,我们就可以不用考虑A1,这样就可以发现2只能填入A3中,所以A3也能确定,A2和A4可以通过其他办法进行确定。
4、 假设法:如果找不到能够确定的空格,我们不妨进行假设,当然,假设也是原则的,我们不能进行
无意义的假设,假设的原则是:如果通过假设一个空格的数字,可以确定和这个空格处在同一个单元内的其它某一个或者某几个空格的数字,那么我们就以选择这样的空格来假设为佳。举例说明,B3可以填入1或者2,A3可以填入2或者3,B4可以填入1或者2,这个时候我们就应该假设B3填入2,这样就可以确定A3填入3,B4填入1,然后以这个为基础进行推理,如果推出违反规则的情况出现,那么这个假设就是错误的,我们回到假设点重新开始。
例题精讲
模块一、构造幻方
【例 1】 3?3的正方形中,在每个格子里分别填入1~9的9个数字,要求每行每列及对角线上的三个数的
和相等(请给出至少一种填法).
【考点】构造幻方 【难度】1星 【题型】填空 【解析】 方法一:第一步:求幻和:(1?2?3??9)?3?15
第二步:求中心数:我们把幻方中对角线交点的数叫“中心数”,仔细观察可以发现:除了
对角线外,第二行、第二列也分别经过中心数,那么,经过中心数的四条线段上的数字总和是幻和的4倍,即15?4?60,显然,在这个总和中,中心数用了四次,其余各数正好各用一次,所以中心数应是:(60?45)?3?5
第三步:确定四个角上的数.由于在同一条直线上的三个数的和是15,所以如果某格中的
数是奇数,那么与这个数在同一条直线上的另两个数的奇偶性相同,所以四个角上的数必为偶数.
第四步:用尝试法填一个基本解,以基本解为基础,可绕中心旋转与对调得到其它各解,
共8解,下图为其中一解,其余解均可由其翻转或旋转得到:
276951438方法二(对易法):
南宋数学家杨辉概括为:“九子斜排,上下对易,左右相更,四维挺出”.即:先把1到9九个数字按顺序斜着排列,再把上下的数字1和9对调,左右的数字7和3对调,最后把4个不在边上也不在最中心的数字拉到角上,一个三阶幻方就形成了.
147895623384561927385176492
方法三(阶梯法):
阶梯法也叫楼梯法,是法国数学家巴赫特创造的.这个方法看起来有点像对易法,但又完全不一样,十分简单而巧妙,适用于所有奇数阶幻方.这个方法把n阶方阵从四周向外扩
展成阶梯状,然后把n2个自然数顺阶梯方向先码放好,再把方阵以外部分平移到方阵以内其对边部分去,即构成幻方.下图表示了如何用阶梯法构成3阶幻方.
276951 438
方法二和方法三中将1~9按8个不同的方位排列就可以得到本题8个不同的解. 方法四(罗伯法):
把1(或最小的数)放在第一行正中,按以下规律排列剩下的数: ⑴ 每一个数放在前一个数的右上一格;
⑵ 如果这个数所要放的格已经超出了最顶行,那么就把它放在最底行,仍然要放在右一列. ⑶ 如果这个数所要放的格已经超出了最右列,那么就把它放在最左列,仍然要放在上一行. ⑷ 如果这个数所要放的格已经填好了其它的数,或者同时超出了最顶行和最右列,那么就把它放在前一个数的下面,具体如下图:
1132213421
134526341567283415672834159672
这是法国人罗伯特总结出的方法,所以叫“罗伯法”.罗伯法的口诀:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.它对于构造连续自然数(以及能构成等差数列的数)幻方是最简单易行的,适用于所有奇数阶幻方.
【答案】
834159672