范围内,水平0-2mm,三角坑2mm,在1001km+310m处轨距+3-2变化率在5m范围超过3‰且该处在5m之内有3mm轨向,为S型轨向。使动车组在此通过时产生晃车点)。
5、轨距变化率过大与扭曲的复合不平顺
轨道扭曲即三角坑,对车辆运行的影响是使某个车轮减载,严重时甚至悬空。当较大的轨距变化率与三角坑同时出现时,就可能产生减载的车轮轮缘冲击钢轨的情况下,当冲击角与减载率达到一定程度的耦合时,就可能产生“车轮爬轨”。因此在快速行车条件下,轨距变化率超限与轨道扭曲同时出现的情况是对行车安全最不利的情况。当机车车辆在此通过时,由于受轨距变化率与三角坑的双重影响,将使机车产生严重的左右摇摆和侧向摇摆。因此当我们检查到这种情况时应迅速采取措施。 6、轨道短波纵向高低与扭曲的复合不平顺
我们所指的这种短波纵向高低一般是指长度2-5m的高低,这种高低一般与车体的转向架长度接近,当这种高度与三角坑相重叠时对车辆的运行是十分有害的。纵向高低为包时、将使列车运行的前进方向车轮减载,如果在此处还有一处扭曲(三角坑)存在,很容易使车体产生一种三维晃动、轻则影响旅客舒适度,重则影响列车运行安全,导致列车脱轨。 在对快速区段线路进行检查过程中,我们经常会遇到各单项几何尺寸不超限但却存在轨道复合不平顺问题。因此在快修线路维修中应加强对轨道复合不平顺的研究,及时发现和消除这种轨道复合不平顺,以确保快速列车的安全和旅客舒适度。
二、钢轨状态不良引起晃车的主要原因有直线地段钢轨侧磨,轨顶面不平顺,焊缝病害及轨底坡不良等。 (一)直线地段钢轨侧磨 1、对晃车产生的影响:
6
(1)列车以不同时速通过侧磨地点时,产生的晃动反映也相差较大,列车速度在95-135km/h时反映明显,特别是在100-125km/h机车摇晃严重,水平加速度最大测到0.36g。
(2)直线钢轨侧磨后,虽然线路上轨向良好,轨距不超限。但由于钢轨对车轮导向作用,车轮轮缘在沿钢轨运行时,运行到侧磨点时(相当于运动到一处轨向不良处所),必然向线路外侧用力,导致轮对蛇形运动过大转向架摇摆严重。在交替侧磨地点,如侧磨波长与机车,动车或车辆的自振波长相耦合时,机车与动车及车辆必然产生强烈的抖动,使机车动车左右摇摆严重,导致晃车,产生严重的水平加速度。
(3)列车提速后在即有线上大量开行动组。动车组由于其自重轻,对线路状态的敏感性比一般机车车辆强,在通过侧磨点时会产生严重的侧向摆动,影响到舒适度,产生水平加速度。这也就是侧磨点有时对机车不产生影响,而对动车组却产生严重的影响。
(4)重载提速区段,钢轨作用边受重载列车的长期碾压,会产生钢轨肥边,这种肥边在列车的碾压下又会出现掉块。长度一般为20-30mm,使钢轨作用边形成一种锯齿形,这种钢轨状态在轴重较重的机车车辆通过时的影响较轻或不产生影响。而对动车组来说,却是产生水平加速度的一个原因。这是因为车轮在蛇形运动时,在沿钢轨作用边运行时当行驶到肥边脱落处时,由于车轮轮圆瞬间失去导向作用,使车体产生抖动,进行影响到行车的平稳和旅客舒适度。
(二)轨面不平顺对晃车的影响
1、轨面不平顺主要是指波浪形磨耗,剥落掉块,轨面擦伤等病害。他们产生有如下特点:
(1)波浪型磨耗是指钢轨顶面因磨耗而开成的有规律性的不平顺,波长30-80mm称为波纹磨耗,80mm以上者为波浪磨耗。波浪型磨耗产生的原因与轨道弹性和钢轨强度有关。当波浪形磨耗较重时,轮轨之间作用力和
7
轨道振动增大,对轨道的破坏性也增大,加大了养护维修工作量。 (2)剥落掉块:轨端或轨顶面剥落掉块是轮轨接触疲劳和冲击荷载作用下下的伤损,或是由于钢轨制造工艺不良,金属强度不足,接触应力过大以及非金属夹杂物所引起的钢轨顶面不平顺病害。严重的掉块可导致钢轨折断。
(3)轨面擦伤是由于机车运行操作不当,机车车轮在钢轨上打滑空转或紧急制动,轮轨间的剧烈磨擦产生轨顶面局部高温,在常温下迅速冷却后,在轨面形成的局部凹槽、伤损及龟裂,它极易发展为轨头横向裂纹。 以上三种轨面不平顺除剥落掉块以外,另两种不平顺均属于集中连续出现,特别是长大坡道,进站制动地段。 2、对晃车的影响
轨面不平顺是一种连续性短波不平顺,长度一般为几毫米至一百多毫米,深度一般为0.5-1mm最深为2mm。不平顺峰值间距与机车的轴距相接近。使快速运行的机车动车车辆在通过轨面不平顺地段时,将导致车轮连续不断的对轨面不平顺产生高频率冲击,使转向架产生强烈的抖动,进而使车体的震动加强,对轮轨动态作用的影响极大(波长3cm幅值0.1mm的波形磨耗不平顺在80km/h速度引起的车体重向加速度高达220g)。产生较大的振动加速度,当机车车辆在上述地段通过时,将使机车车辆产生剧烈的抖动,对舒适度的影响非常大。 (三)焊缝病害对晃车的影响
随着列车速度的不断提高,时速大于120km/h区段,钢轨焊缝质量逐步与快速线路要求不相适应。焊缝病害已成为引起晃车的一个主要原因。
1、焊缝病害对晃车的影响:
(1)焊缝病害属于短波不平顺的一种,它的存在,影响列车的平稳性和舒适性,使车辆的震动加强,使轮轨产生巨大的冲击力,簧下惯性力增强,使实际轴重增大,对轮轨动态作用的影响极大,产生较大的振动加速度。
8
使轨检车、动检车,检查高低、轨向水平、垂直加速度等项目易出分,添乘机车或动车时感觉颠簸,左右摇摆极不舒适。
(2)由于动车组的轴重小,对焊接接头作用边的平直度的敏感性比一般机车要大一些,如焊缝支嘴,焊缝肥边等,特别是对于侧面呈凸形的焊缝接头肥边,动车组比一般机车更容易产生水平晃动。(例:京哈线999km+300m—600m处在08年11月份连续出现动车组晃车,而普通机车装载的便携式晃车仪在此却不出现晃车点。经到现场复查,该处轨向、水平、高低轨距均在规定范围内,但是在该处焊缝肥边严重,在有肥边处有时对股又有侧磨。通过对肥边进行打磨后,并对几何尺寸按标准进行了整修,基本消灭晃车点)。
(3)动车组对焊接接头轨面高低不平顺的的敏感性也比普通机车大一些,这也是因为动车组轴重小,通过焊缝不平顺点时更容易产生跳动。一般机车对于焊缝单侧高低不平顺的反应,在机车动态监测仪上通常显示为垂直加速度,但动车组通过时却显示的是水平加速度。由此可见,有些焊缝病害,对于机车或动车组的反应是不一样,机车有时反应有时却不一定反应,而动车组的反应却比机车敏感。 (四)轨底披不良对晃车的影响:
我国铁路规定,线路上的钢轨应向线路中心线内倾,我们把这一内倾称为轨底坡。设置轨底坡的目的是使车轮压力集中于钢轨的中轴线上,减小荷载偏心矩,此外车轮踏面的1:20的部分能与轨顶面的中部接触,增加了轮轨间的接触面积,使列车在蛇行运动中,由于有轨底坡的存在,使车体中心始终与线路中心相垂直,我国规定的轨底坡为1:40,轨底坡设置不正确,在列车通过时,就会对机车车辆产生一定的影响,轨底坡一侧偏大,一侧偏小,虽然我们检查轨向轨距水平均不超限,但轴重较轻的动车组通过时,车轮踏面运行到此处,受不良轨底坡度的影响,车轮踏面的压力将离开钢轨中心而偏向道心一侧,且略向外斜,使车体产生侧摆性运动。
9
特别是轨底坡在一股钢轨上一段距离内轨底坡偏大,一段距离内轨底坡不足,形成一种S形轨向,对动车组的影响更大。更容易在此晃车产生水平加速度。
三、道床状态不良对晃车的影响
道床病害主要包括,空吊板,暗坑,翻浆冒泥等,其中以空吊板对晃车的影响为最大。
一般机车对于线路空吊板的反应,在机车车载监测化数握上通常显示为垂直加速度,但动车组却大量显示为水平加速度。(例2009年4月19日,京啥上行线998+589m处1256次通过时出现垂加0.10gI级超限,而D174次在此通过时,却显示的是水平0.08gII级超限)。只有在线路空吊板左右非常对称的情况下才显示为垂直加速度。现场检查发现线路道床状态相对较好的情况下,空吊板一般都是不对称的,另外道床状态不良的地段往往还同时存在线路方向,高低等其他问题,道床对轨道的横向约束力下降,因而容易使轴重较轻的动车组发生水平晃动。
在列车作用下,轨道为具有均匀支撑的连续梁,当存在空吊板或暗坑时,其支撑变得很不均匀,钢轨的挠度也相应增大,在恢复变形的过程中还会对车轮产生反作用力。这种动力特性对于轴重较小的动车组比轴重较大的普通机车要敏感得多。
根据北京局在对动车组晃车原因进行分析的资料中,某处线路一侧钢轨纵向高低良好,另一侧纵向局部高8mm,造成该点水平差8mm,但同时,在该点设置了相应的空吊板,普通机车能够平稳运行,机车车载仪没有任何显示,而动车组通过时则显示水平三级报警值。现场观察发现普通机车通过时,该点空吊完全被压下,机车没有发生晃动,而动车组通过时,空吊只被部分压下,而且钢轨产生反弹,动车组发生明显晃动。分析其原因就是动车组轴重较轻,使钢轨产生的挠曲较小,不能使空吊情况下的钢轨产
10