小学 一年级 奥数 华罗庚学校数学课本 下册 下载本文

学习好资料 欢迎下载

在这道题的运算中,把“+3”搬到“-2”的前面,把“+5”搬到了“-4”的前面,……把“+11”搬到了“-10”的前面,这就叫带着符号搬家。巧妙利用这种搬法,可以使计算简便。

习题一

1.计算:13+14+15+16+17+25 2.计算:2+3+4+5+15+16+17+18+20 3.计算:21+22+23+24+25+26+27+28+29

4.计算:5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20 5.计算:22-20+18-16+14-12+10-8+6-4+2-0 6.计算:10-20+30-40+50-60+70-80+90 7.计算:(2+4+6+8+10)-(1+3+5+7+9) 8.计算:(2+4+6+…+20)-(1+3+5+…+19) 9.计算:(2+4+6+…+100)-(1+3+5+…+99)

习题一解答

1.解:见下图:

2.解:见下图:

3.解:见下图:

学习好资料 欢迎下载

4.解:

5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20

=1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20-(1+2+3+4) =210-10(利用例5的结果) =200 5.解:

22-20+18-16+14-12+10-8+6-4+2-0

=(22-20)+(18-16)+(14-12)+(10-8)+(6-4)+(2-0) =2+2+2+2+2+2 =12 6.解:

10-20+30-40+50-60+70-80+90 =10+30-20+50-40+70-60+90-80

=10+(30-20)+(50-40)+(70-60)+(90-80) =10+10+10+10+10 =50 7.解:

(2+4+6+8+10)-(1+3+5+7+9)

=(2-1)+(4-3)+(6-5)+(8-7)+(10-9) =1+1+1+1+1 =5 8.解:

(2+4+6+…+20)-(1+3+5+…+19)

学习好资料 欢迎下载

=10 9.解:

(2+4+6+…+100)-(1+3+5+…+99)

=50

第二讲 速算与巧算(二)

例1 哥哥和妹妹分糖。哥哥拿1块,妹妹拿2块;哥哥拿3块,妹妹拿4块;接着哥哥拿5块、7块、9块、11块、13块、15块,妹妹拿6块、8块、10块、12块、14块、16块。你说谁拿得多,多几块? 解:方法1:先算哥哥共拿了多少块?

学习好资料 欢迎下载

再算妹妹共拿了多少块?

72-64=8(块)

方法2:这样想:先算每次妹妹比哥哥多拿几块,再算共多拿了多少块。

(2-1)+(4-3)+(6-5)+(8-7)+(10-9)+(12-11)+(14-13)+(16-15) =1+1+1+1+1+1+1+1 =8(块)

可以看出方法2要比方法1巧妙!

平时注意积累,记住一些有趣的和重要的运算结果,非常有助于速算。比如,请同学记住几个自然数相加之和: 1+2=3 1+2+3=6 1+2+3+4=10 1+2+3+4+5=15 1+2+3+4+5+6=21 1+2+3+4+5+6+7=28 1+2+3+4+5+6+7+8=36 1+2+3+4+5+6+7+8+9=45 1+2+3+4+5+6+7+8+9+10=55

例2 星期天,小明家来了9名小客人。小明拿出一包糖,里面有54块。小明说:“咱们一共10个人,每人都要分到糖,但每人分到的糖块数不能一样多,谁会分?”结果大家都无法分,你能帮他们分好吗? 解:按小明提的要求确实无法分。

学习好资料 欢迎下载

因为要使得每个人都得到糖,糖块数人人不等,需要糖块数最少的分法是:第一人分到1块,第二人分到2块,…第十人分到10块。但是,这种分法共需要有

1+2+3+4+5+6+7+8+9+10=55(块)

而小明这包糖一共才54块,所以按这种方法无法分。如果改变一下,有一人少得1块糖,比如说,应该得10块糖的小朋友只分到了9块,但是这样一来,他就和另一个先分得9块糖的那个小朋友一样多了,这又不符合小明提出“每人分到的糖块数不能一样多”的要求。

(注意:“按小明提的要求无法分”就是此题的答案。在数学上“无解”也叫问题的答案。)

例3 时钟1点钟敲1下,2点钟敲2下,3点钟敲3下,……照这样敲下去,从1点到12点,这12个小时时钟共敲了几下?

解:这是一道美国小学奥林匹克试题,要求在3分钟内就要得出答案。 方法1:凑十法

方法2:如果能记住从1到10前十个自然数之和是55,计算会更快。 (1+2+3+4+5+6+7+8+9+10)+11+12 =55+11+12=78(下)

习题二

1.三个小朋友分5块糖。要求每人都分到糖,但每人分到的糖块数不能一样多,你能分吗?

2.①把16只小鸡分别装进5个笼子里,每个笼子里都要有鸡,而且每个笼子里的鸡的只数也不能相同,如何分装?

②按同样要求,把15只小鸡装进5个笼子能办得到吗? ③按同样要求,把14只小鸡分装到5个笼子能办得到吗? 3.①把100块糖分给10个小朋友。要求每人都分到单数块糖,而且每人分到糖块数都不一样,如何分?