第3章 答案 大学物理 下载本文

第3章 狭义相对论 一、选择题

1(C),2(B),3(D),4(D),5(D) 二、填空题

13c; 2m25m--(4). 5.8×1013, 8.04×102 ; (5). , lS9lS(1). 4.33×108s; (2). 0.99c; (3).

-

三、计算题

1.在K惯性系中,相距?x = 5×106 m的两个地方发生两事件,时间间隔?t = 102 s;而在相

对于K系沿正x方向匀速运动的K'系中观测到这两事件却是同时发生的.试计算在K'系中发生这两事件的地点间的距离?x'是多少?

解:设两系的相对速度为v.根据洛仑兹变换, 对于两事件,有

-

?x? ?t??x??v?t?1?(v/c)?t??(v/c22

)?x?21?(v/c)由题意: ?t??0

可得 ?t?(v/c2)?x

2及 ?x???x1?(v/c)

由上两式可得 ?x??[(?x)2?(c2?t/c)2]1/2?[?x2?c2?t2]1/2= 4×106 m

2. 一隧道长为L,宽为d,高为h,拱顶为半圆,如图.设想一列车以极高的速度v沿隧道长度方向通过隧道,若从列车上观d/2h测,

(1) 隧道的尺寸如何? v Ld (2) 设列车的长度为l0,它全部通过隧道的时间是多少?

解:(1) 从列车上观察,隧道的长度缩短,其它尺寸均不变。

v2隧道长度为 L??L1?2

c (2) 从列车上观察,隧道以速度v经过列车,它经过列车全长所需时间为

L1?(v/c)2?l0L?l0? ? t?? vvv这也即列车全部通过隧道的时间.

3. 在惯性系S中,有两事件发生于同一地点,且第二事件比第一事件晚发生?t =2s;而在另一惯性系S'中,观测第二事件比第一事件晚发生?t?=3s.那么在S'系中发生两事件的地点之间的距离是多少?

解:令S'系与S系的相对速度为v,有 ?t???t1?(v/c)2, (?t/?t?)2?1?(v/c)2

-

则 v?c?(1?(?t/?t?)2)1/2 ( = 2.24×108 m·s1 )

那么,在S'系中测得两事件之间距离为:

?x??v??t??c(?t?2??t2)1/2= 6.72×108 m

4. 一飞船和慧星相对于地面分别以0.6c和0.8c速度相向运动,在地面上观察,5s后两者将相撞,问在飞船上观察,二者将经历多长时间间隔后相撞?

解:两者相撞的时间间隔Δt = 5s是运动着的对象—飞船和慧星—发生碰撞的时间间隔,因此是运动时.在飞船上观察的碰撞时间间隔Δt`是以速度v = 0.6c运动的系统的本征时,根据时间膨胀公式?t??t`1?(v/c)22,可得时间间隔为?t`??t1?(v/c)= 4(s).

5.设有一个静止质量为m0的质点,以接近光速的速率v与一质量为M0的静止质点发生碰撞结合成一个复合质点.求复合质点的速率vf.

解:设结合后复合质点的质量为M′,根据动量守恒和能量守恒定律可得

m0v/1?v2/c2?M?vf M?c2?M0c2?m0c2/1?v2/c2

由上面二个方程解得 vf?m0v/(m0?M01?v/c)

四 研讨题

1. 相对论的时间和空间概念与牛顿力学的有何不同?有何联系?

参考解答:

牛顿力学时空观的基本观点是,长度和时间的测量与运动(或说与参考系)无关;而相对论时空观的基本观点是,长度和时间的测量不仅与运动有关,还与物质分布有关。

牛顿力学时空概念是相对论时空观在低速(即运动速度远远小于光速)时的近似。 牛顿力学时空观的基本原理是力学相对性原理,由力学基本原理得到的两个惯性系的运动量间的关系是伽利略变换

x??x?vt,22y??y,z??z,t??t.

狭义相对论时空观的基本原理是相对论的相对性原理和光速不变原理,而相应运动量之间的变换是洛仑兹变换

vt?2xc. x??x?vt,y??y,z??z,t??2vv21?21?2cc比较上述两个变换式可知,在低速时,即v ??c时,洛仑兹变换式就会过渡到伽利略变换式。

2. 同时的相对性是什么意思?为什么会有这种相对性?如果光速是无限大,是否还会有同时性的相对性?

参考解答:

同时性的相对性的意思是:在某一惯性系中两地同时发生的两个事件,在相对于此惯性系匀速运动的另一惯性系中观测,并不是同时发生的。

这个结论与光速不变原理紧密相联。

设相对运动的惯性系是S(x0y)和S?(x?0?y?),坐标系和相对运动如图所示,坐标原点0和0?重合时设为t?t??0。

由洛仑兹变换,两事件的时空坐标关系为

v?t?2?xc ?t?? 2v1?2c如果在S系中两事件同时发生,即?t?0,那么在S?系中两事件的时间间隔

v?2?x ?t??c2v1?2c与两事件在S系中发生的空间间隔?x有关。当?x?0时,?t??0。即两事件在S?系中不同时发生。

如果光速是无限大,也就是研究的对象均属于低速情况,那必然是牛顿力学的情况。即洛仑兹变换中的

v2v?0. 2?0,cc2则 ?t???t,就不再有同时的相对性。

3. 在某一参考系中同一地点、同一时刻发生的两个事件,在任何其他参考系中观察观测都将是同时发生的,对吗?这里的参考系均指惯性系。

参考解答: 对的。

如果S系和S?系是相对于运动的两个惯性系。设在S?系中同一地点、同一时刻发生了

??x1??0,?t??t2??t1??0. 两个事件,即?x??x2将上述已知条件代入下面的洛仑兹坐标变换式中

v??x1?)?t??2(x2c ?t?t2?t1?

2v1?2c则可得 ?t?t2?t1?0,说明在S系中也是同时发生的。

这就是说,在同一地点,同一时刻发生的两个事件,在任何其他参考系中观察观测也必然是同时发生。