½ö¹©¸öÈ˲ο¼
µÚ¶þÕ ¼«ÏÞÓëÁ¬Ðø
Ò»¡¢ÅжÏÌâ
1. Èô f(x0?0)?f(x0?0)£¬Ôò f(x) ±ØÔÚ x0µãÁ¬Ðø£» £¨ £© 2. µ± x?0 ʱ£¬x2?sinxÓë x Ïà±ÈÊǸ߽×ÎÞÇîС£» £¨ £© 3. Éè f(x) ÔÚµã x0 ´¦Á¬Ðø£¬Ôò f(x0?0)?f(x0?0) £»£¨ £© 4. For personal use only in study and research; not for commercial use 5.
1?2?xsin,x?06. º¯Êý f(x)?? ÔÚ x?0 µãÁ¬Ðø£» £¨ £© x?x?0?0,7. x?1 ÊǺ¯Êý y?x2?2 µÄ¼ä¶Ïµã£» £¨ £© x?18. f(x)?sinx ÊÇÒ»¸öÎÞÇîСÁ¿£» £¨ £©
9. For personal use only in study and research; not for commercial use 10.
11. µ± x?0 ʱ£¬x Óë ln(1?x2) Êǵȼ۵ÄÎÞÇîСÁ¿£» £¨ £© 12. Èô limf(x) ´æÔÚ£¬Ôò f(x)ÔÚ x0 ´¦Óж¨Ò壻 £¨ £©
x?x013. ÈôxÓëyÊÇͬһ¹ý³ÌÏÂÁ½¸öÎÞÇî´óÁ¿£¬Ôòx?yÔڸùý³ÌÏÂÊÇÎÞÇîСÁ¿£»£¨ £© 14. For personal use only in study and research; not for commercial use 15.
x116. lim? £» £¨ £©
x?0x?sinx2117. limxsin?1 £» £¨ £©
x?0x218. lim(1?)?x?e2 £»£¨ £©
x??x19. For personal use only in study and research; not for commercial use 20.
11121. ÊýÁÐ,0,,0,,0,LÊÕÁ²£»£¨ £©
24822. µ±x?0?ʱ£¬1?x?1?x~x £»£¨ £©
123. º¯Êý f(x)?xcos £¬µ± x?? ʱΪÎÞÇî´ó£»£¨ £©
x²»µÃÓÃÓÚÉÌÒµÓÃ;
½ö¹©¸öÈ˲ο¼
sinx£¨ £© ?1 £»
x??x25. ÎÞÇî´óÁ¿ÓëÎÞÇîСÁ¿µÄ³Ë»ýÊÇÎÞÇîСÁ¿£»£¨ £©
24. lim26. ln(1?x)~x £» £¨ £© 27. limxsinx??1£¨ £© ?1 £»
x28. limtanx?1 . £¨ £©
x?0x¶þ¡¢µ¥ÏîÑ¡ÔñÌâ
x2?7x?121¡¢lim2?£¨ £© A£®1 B£®0 C£®
x?4x?5x?4? D£®
1 3(x?h)2?x22¡¢ lim =( )¡£A. 2x B. h C. 0 D. ²»´æÔÚ
h?0h2x2?x?32??3¡¢lim£¨ £© A£® B£® C£®0 D£®1
x??3x2?x?234¡¢limn3?3?3n?1n4?1n2?2n???£¨ £© A£®? B£® C£®0 D£®1
34?3x?2,x?05¡¢Éè f(x)??2 £¬Ôò limf(x)? ( )
x?0?x?2,x?0?(A) 2 (B) 0 (C) ?1 (D) ?2
?ex?1£¬x?0,Ôòlimf(x)?( ) 6¡¢Éèf(x)??2?x?1£¬x?0x?0(A) 1 (B) 0 (C) ?1 (D) ²»´æÔÚ
?x2£¬x?0?Éèf(x)?f(x)?( ) 7¡¢?2£¬x?0,Ôòlimx?0?x?1£¬x?0?(A) 2 (B) 0 (C) 1 (D) ²»´æÔÚ
x?1,Ôòlimf(x)?£¨ £© A£®0 B£®1 C£®?1 D£®²»´æÔÚ 8¡¢Éèf(x)?x?1x?119¡¢limxcos?£¨ £© A.0 B.1 C.? D.²»´æÔÚ
x??x110¡¢limxsin?£¨ £© A.0 B.1 C. ? D. ²»´æÔÚ
x??x11¡¢ÏÂÁм«ÏÞÕýÈ·µÄÊÇ( ) A.limxsinx??sin2x11sinx?1£» ?1 B.limxsin?1£» C.lim?1£» D.limx?0x?0x??xxxx²»µÃÓÃÓÚÉÌÒµÓÃ;
½ö¹©¸öÈ˲ο¼ 12¡¢limsinmx1 (mΪ³£Êý) µÈÓÚ ( ) A.0 B. 1 C. D. m
x?0xm13¡¢limnxn??2sin2n µÈÓÚ ( ) A.0 B. 1 C.
1x D. x 14¡¢limsin2xx?0x(x?2)?£¨ £© A.1
B.0 C.¡Þ
D.x
15¡¢limtan3x?£¨ £© A.? B.
3x?02x2 C.0 D.1
16¡¢limx??(1?2x)x?£¨ £© A. e-2 B. e-1 C. e2 ??2,x??117¡¢ÒÑÖªº¯Êýf(x)???x?1,?1?x?0£¬Ôòlimf(x) ºÍ limf?x??1x?0(x)( )
?1?x2,0?x?1(A) ¶¼´æÔÚ (B) ¶¼²»´æÔÚ
(C) µÚÒ»¸ö´æÔÚ£¬µÚ¶þ¸ö²»´æÔÚ (D) µÚÒ»¸ö²»´æÔÚ£¬µÚ¶þ¸ö´æÔÚ
18¡¢µ± n?? ʱ£¬nsin1n ÊÇ ( )
(A)ÎÞÇîСÁ¿ (B) ÎÞÇî´óÁ¿ (C) ÎÞ½ç±äÁ¿ (D) Óнç±äÁ¿
19¡¢x?1? ʱ£¬ÏÂÁбäÁ¿ÖÐΪÎÞÇî´óÁ¿µÄÊÇ ( )
1(A) 3x?1 (B) x2?1x?1 (C) 1x (D) x?1x2?1
?x20¡¢º¯Êý f(x)???x?1?1 µÄÁ¬ÐøÇø¼äÊÇ ( ) ?2x?1(A)(??,1) (B)(1,??) (C)(??,1)?(1,??) (D) (??,??)
?x2?1£¬x?021¡¢f(x)???0£¬x?0µÄÁ¬ÐøÇø¼äΪ?( )
?x£¬x?0(A) £¨??£¬??£© (B) £¨??£¬0£©?£¨0£¬??£© (C)£¨ ??£¬0] (D) £¨0£¬??£©22¡¢º¯Êý f(x)???1,x?0?1,x?0 £¬ÔÚ x?0 ´¦ ( )
?(A) ×óÁ¬Ðø (B) ÓÒÁ¬Ðø (C) Á¬Ðø (D) ×ó¡¢ÓÒ½Ô²»Á¬Ðø
23¡¢f(x) ÔÚµã x?x0 ´¦Óж¨Ò壬ÊÇ f(x)ÔÚ x?x0´¦Á¬ÐøµÄ ( )
²»µÃÓÃÓÚÉÌÒµÓÃ;
D.e