生物统计附实验设计最全资料--复习题、课后思考题、试卷及答案 下载本文

二、填空

1、生物统计分描述性统计和分析性统计。描述性统计是指运用分类、制表、图形以及计算概括性数据(平均数、标准差等)来描述数据特征的各项活动。分析性统计是进行数据观察、数据分析以及从中得出统计推断的各项活动。

2、统计分析的基本过程就是由样本推断总体的过程。该样本是该总体的一部分。

3、由样本获取总体的过程叫抽样。常用的抽样方法有随机抽样、顺序抽样、分等按比例抽样、整群抽样等。

4、样本平均数与总体平均数的差异叫抽样误差。常用 S/√N表示。

5、只有降低抽样误差才能提高试验结果的正确性。试验结果的正确性包括准确性和精确性。 6、试验误差按来源分为系统误差(条件误差)和随机误差(偶然误差)。系统误差(条件误差)影响试验结果的准确性,随机误差(偶然误差)影响试验结果的精确性。

7、系统误差(条件误差)可以控制,可通过合理的试验设计方法降低或消除。随机误差(偶然误差)不可控制,可通过理论分布来研究其变异规律,或相对比较其出现的概率的大小。

8、样本推断总体分假设检验和区间估计两大内容。常用的检验方法有t检验、F检验和卡方检验。 9、置信区间指在一定概率保证下总体平均数的可能范围。

10、t检验是通过样本平均数差值的大小来检验处理效应是否存在,两样本平均数的差值代表了试验的表观效应,它可能由处理效应(真实效应)和误差效应引起,要检验处理效应是否存在,常采用反证法。此法先建立无效假设:即假设处理效应不存在,样本平均数差值是由误差引起,根据差异在误差分布里出现的概率(即可能性大小的衡量)来判断无效假设是否成立。

11、判断无效假设是否成立的依据是小概率事件实际不可能原理,即假设检验的基本依据。用来肯定和否定无效假设的小概率,我们称之为显著水平,通常记为α 。

12、t检验通常适合两样本连续性(非间断性)随机变量资料的假设检验,当二项分布逼近正态分布时,百分数资料也可用t检验。

13、F检验也叫方差分析。通常适合三个或三个以上样本连续性(非间断性)随机变量资料的假设检验。顾名思义,F检验是用方差的变异规律(即F分布)来检验处理效应是否存在。

14、F检验是从总离均差平方和与自由度的剖分开始,将总变异剖分为组间变异和组内变异。因为组间变异由处理效应和误差效应共同引起,组内变异由误差效应引起。因而,将计算出的组间方差和组内方差进行比较,就可判断处理效应是否存在。

15、F检验显著或极显著说明组间处理效应存在,但并不能说明每两组间都存在差异,要知道每两组间是否有差异,必须进行多重比较,常采用的比较方法有最小显著差数法(LSD法)和最小显著极差法(LSR法),后一种方法又分为q法和新复极差法(SSR法)。生物试验中常采用新复极差法(SSR法)。

16、两因素无重复观测值方差分析只能分析试验因素的简单效应和主效应,不能分析出互作效应,因此时计算的误差自由度为0。当两因素有互作效应时,试验设计一定要在处理组(水平组合)内设立重复。

17、两因素有重复观察值方差分析,既可分析出两因素的主效应,还可分析出互作效应。当互作效应显著存在时,可通过多重比较找出最佳水平组合。

18、35、多重比较的结果通常用字母表示,平均数右上角具有相同英文字母表示差异不显著,具有不同英文字母表示差异显著。用小写英文字母表示差异显著,用大写英文字母表示差异极显著。 19、当二项分布接近于正态分布时,两次数资料样本的差异,可通过计算百分数,用t检验。 20、次数资料也可用?2检验法进行假设检验,?2检验可分为适合性检验和独立性检验。 21、独立性检验要先设计出联列表,然后用?2检验,检验两因子是相互独立还是相互依赖,即两因子有无相关性。

22、?2分布是随自由度变化的一簇曲线,任一曲线皆是连续的。在次数资料的显著性检验中,当

检验资料的自由度等于1时,算得的?2值将有所偏大,因此应予以矫正,统计上称为连续性矫正。 23、独立性检验中,当某一单元格所计算的理论次数在5以下时,要进行相近单元格合并处理。 24、三种统计分析能得出两试验因素有无相关性的结论,它们是:两因素有重复观测值方差分析,通过互作效应检验说明、独立性检验和相关回归分析。

25、假设检验差异显著或极显著,通常用“*”或“**”表示,说明:有95%或99%的把握说明处理效应存在,但要犯5%或1%的Ⅰ型错误,即有5%或1%的可能将处理效应不存在判定为存在,或将非真实效应判定为真实效应。

26、假设检验差异不显著说明试验结果有两种可能:一是真实效应的确不存在,二是由于犯Ⅱ型错误将真实性差异判定为非真实性差异,其可能性大小受显著水平α、样本平均数之间的差异、试验误差的大小有关。

27、假设检验的两个类型错误相互制约,处理好它们之间的矛盾的措施是加大样本含量、降低试验误差。

28、试验误差既影响样本观测值的准确性,又影响假设检验的可靠性,因而试验之前应采用合理的方法设计试验尽量减少或降低试验误差。试验设计的基本原理是随机、重复、局部条件一致。 29、常采用的试验设计方法有:完全随机试验设计、配对或随机单位组设计、拉丁方设计、交叉设计和正交试验设计。

30、完全随机试验设计只用随机和重复两个原理,适合样本变异不大时应用。配对或随机单位组设计应用了试验设计的随机、重复和局部条件一致三个原理,可以降低试验误差,当样本变异较大时应用。但组对和组单位组要求严格,不能勉强组对和组单位组。 31、正交试验设计适合多因子多水平试验设计。

32、试验计划的核心内容是试验方案、试验方法、样本含量的确定。 33、试验方案中各因素水平的设置常采用等差、等比和随机法确定。

34、多个处理(处理数为三或三以上时)比较试验中,各处理的重复数按误差自由度为12以上的原则来估计,因这以后临界F值减小的幅度已很小。

35、随机单位组单因素试验设计,试验结果的统计分析时,应将单位组看作一试验因子,采用两因素无重复观察值的方差分析。

36、两因素试验设计中,为了估计互作效应,降低误差效应,各处理组必须设立重复。 三、单项选择题

1、反映抽样误差的统计量是( )A、标准差 B、变异系数 C、标准误 D、均方 2、算术平均数的重要特性之一是离均差平方和( )。

A、最小 B、最大 C、等于零 D、接近零

3、在一个平均数和方差均为10的正态总体N(10, 10)中,以样本容量10进行抽样,其样本平均数服从( )分布。A. N(10, 1) B. N(0, 10) C. N(0, 1) D. N(10, 10) 4、F检验后的最小显著差数多重比较检验法又可记为( )。

A、LSD法 B、PLSD法 C、SSR法 D、DLSD 5、正态分布不具有下列( )之特征。

A、左右对称 B、单峰分布 C、中间高、两头低 D、概率处处相等 6、两个样本方差的差异显著性一般用( )测验。 A、t B、F C、u D、?2测验

7、一批种子的发芽率为75%,每穴播5粒,出苗数为4的概率( )。 A、 B、0.0146 C、 D、

8、方差分析基本假定中除可加性、正态性外,尚有( )假定。否则要对数据资料进行数据转换。

A、无偏性 B、无互作 C、同质性 D、重演性 9、若否定H0,则( )。

A、犯?错误 B、犯?错误 C、犯?错误或不犯错误 D、犯?错误或不犯错误

10、系统误差与随机误差的区别在于。( )

A、系统误差主要是由测量仪器或方法偏差所造成的;而随机误差则是由偶然不可控的因素造成的 B、系统误差是不可以控制的,随机误差是可以避免的

C、在相同条件下,重复测量一动物体高的结果不尽一致的原因是由系统误差造成的 D、系统误差是不定向的,随机误差是定向的

11、科技论文中,如果同行两个平均数右上角有相同的大写字母,有不同的小写字母,表示两个平均数( )。A、差异不显著 B、差异极显著 C、差异显著 D、不清楚 四、是非题

1、二项分布的平均数为np,标准差为npq。( √ )

2、在二因素完全随机化设计试验结果的方差分析中,误差项自由度为(n-1)(ab-1)。(×) 3、?2分布是随自由度变化的一簇曲线,任一曲线皆是间断的,可用于次数资料的假设测验。(× ) 4、一个显著的相关系数或回归系数说明X和Y变数的关系必为线性关系。( × ) 5、总体的特征数叫统计数。( × )

6、显著性检验中不是犯α错误就是犯β错误。( √ )

7、不显著的直线相关或回归关系不一定说明X和Y没有关系。( √ )

8、两个连续性变数资料的差异显著性检验只能用t检验,不能用F检验。 ( × )

五、简答题:

1、假设检验的基本原理?

可从试验的表面差异与实验误差与试验误差(或抽样误差)的权衡比较中间接地推断试验的真实差异是否存在,这就是假设检验的基本思想

2、对于k?k?3?个样本平均数,能否利用u或t测验进行两两独立比较?为什么? 不能

一,检验工作量大 二,无统一的试验误差,误差估计的精确性和检验的灵敏性低 三,推断的可靠性低,检验的I型错误率大

3、推导离均差之和等于0,离均差平方和最小? 4、如何提高试验的准确性与精确性?

5、如何控制、降低随机误差,避免系统误差?

答:进行多次平行试验能控制和降低随机误差,虽然单次测量的随机误差没有规律,但多次测量的总体却服从统计规律,通过对测量数据的统计处理,能在理论上估计起对测量结果的影响。只要试验工作做得精细,系统误差容易克服。

6、统计表与统计图有何用途?常用统计图、统计表有哪些?三线表的意义?

答:统计表使用表格形式来表示数量关系,统计图是用几何图形来表示数量关系,可以把研究对象的特征、内部构成、相互关系等简明、形象的表达出来,便于比较分析 统计表:简单表、复合表

统计图:长条图、圆图、线图、直方图、折线图 7、为什么变异系数要与平均数、标准差配合使用?

答:因为变异系数的大小,同时受到平均数和标准差两个统计数的影响,因而在利用变异系数表示

资料的变异程度时,最好将平均数和标准差也列出 8、标准误与标准差有何联系与区别?

答:标准差和标准误都是变异指标,但它们之间有区别,也有联系。区别: ①概念不同;标准差是描述观察值(个体值)之间的变异程度;标准误是描述样本均数的抽样误差;②用途不同;标准差与均数结合估计参考值范围,计算变异系数,计算标准误等。标准误用于估计参数的可信区间,进行假设检验等。③它们与样本含量的关系不同: 当样本含量 n 足够大时,标准差趋向稳定;而标准误随n的增大而减小,甚至趋于0 。联系: 标准差,标准误均为变异指标,当样本含量不变时,标准误与标准差成正比。

9、样本平均数抽样总体与原始总体的两个参数间有何联系? 10、显著性检验的基本步骤是什么?根据什么确定显著水平? 答:基本步骤:

1,首先对试验样本所在作假设

2,在无效假设成立的前提下,构造合适的统计数,并研究试验所得统计数的抽样分布,计算无效假设正确的概率

3,根据“小概率事件实际不可能原理”否定或接受无效假设

在假设检验中,无效假设是否被否定的依据是“小概率事件不可能原理”。 11、均数差异显著性检验中,肯定和否定无效假设的依据是什么? 12、什么是统计推断?为什么统计推断的结论有可能发生错误?有哪两类错误?如何降低犯两类错误的概率?

一:统计推断是指根据样本和假定模型对总体作出的以概率形式表述的推断 二:由试验的真实差异跟抽样误差引起的

三:第一类错误:把非真实差异错判为真实差异

第二类差异:把真实差异错判为非真实差异 四:适当样本含量

13、进行显著性检验应注意什么问题?如何理解显著性检验结论中的“差异不显著”、“差异显著”、“差异极显著”? 答:注意:

1,要有合理的试验或抽样设计,保证试验结果的可靠、正确、且处理间要有可比性。 2,选用的假设检验方法应符合其应用条件 3,要正确理解差异显著或极显著的统计意义 4,合理建立统计假设,正确计算检验统计数 “差异不显著”:有两种可能:一:它们所在的总体平均数不相同,但被试验误差所掩盖,表现不出差异的显著性 二:它们所在的总体平均数的确无差异 “差异显著”或:“差异极显著”:表面上如此差异的不同样本来自同一总体的可能性小于或,已到达了可以认为它们所在的总体平均数不相同的显著水平。但有些试验结果虽然差异大,但误差大,也许得不出“差异显著”的结论,而有些试验结果虽然差异小,但由于试验误差小,反而可能推断为“差异显著“

14、配对试验设计与非配对试验设计有何区别?

区别:非配对试验设计是指当进行有两个处理的试验时,将试验单位随机分成两个组,然后对两组随机实施一个处理。

配对试验设计是先根据配对的要求将试验单位两两配对,然后将配对成子的两个试验单位随机分配到两个处理组中。要求配对成子的两个试验单位的初始条件尽量一致,不同对子间试验单位的初始条件允许有差异

15、多个处理平均数间的相互比较为什么不宜用t检验法? 第一:检验工作量大 第二:无统一的试验误差

第三:推断的可能性低检验的I型错误率大

16、推导总离均差平方和=组间离均差平方和+组内离均差平方和 17、为何要进行多重比较?如何选用多重比较的方法?

答:F值显著或极显著,否定了无效假设H0,表明实验的总差异主要来源于处理间的变异,实验中各处理平均数之间存在显著或极显著差异,但并不意味着每两个处理平均数间的差异都显著或极显著,也不能具体说明哪些处理平均数间有显著或极显著差异,哪些处理平均数间差异不显著。因而,有必要进行两两平均数间的比较,以具体判断两两处理平均数间的差异显著性。

一般的讲,一个实验资料,究竟采用哪一种多重比较方法,主要应根据否定一个正确的H0和接受一个不正确的H0的相对重要性来决定。如果否定正确的H0事关重大或后果严重的,或对实验要求严格时,用q法较稳妥;如果接受一个不正确的H0是事关重大或后果严重的,则宜用SSR法。生物实验中,由于实验误差较大,常采用SSR法;F检验显著后,为了简便,也可采用LSD法。 18、在什么条件下方差分析之前要作数据转换? 常用的数据转换方法有哪几种? 各在什么条件下应用?

答:分布的非正态性和方差的不同质经常相伴出现,对这类资料不能直接进行方差分析,而因考虑采用非参数方法分析或进行适当数据转换后再作方差分析。 常用的数据转换方法有三种:

平方根转换 此法适用于各组均方与其平均数之间有某种比例关系的资料,尤其适用于总体呈泊松分布的资料。

对数转换 如果各组数据的标准差或全距与其平均数大体成比例,或者效应为相乘性或非相加性。 反正弦转换 反正弦转换也称角度转换。此法适用于如发病率、感染率、病死率、受胎率等服从二项分布的资料

19、 2检验与t检验、F检验在应用上有什么区别?

答:t检验、F检验通常适用于数量性状资料的分析。在畜牧、水产等科学研究中,除了

分析计量资料以外,还常常需要对次数资料、等级资料进行分析。等级资料实际上也是一种次数资料,次数资料服从二项分布或多项分布,其统计分析方法不同于服从正态分布的计量资料,而是要用到次数资料分析-2检验。

20、适合性检验和独立性检验有何区别?

答:独立性检验与适合性检验是两种不同的检验方法,主要区别如下:

1、研究目的不同:适合性检验是判断实际观察的属性类别分配是否符合已知属性类别分配理论或学说,独立性检验是分析两类因子是相互独立还是彼此相关;

2、独立性检验的次数资料是按两因子属性类别进行归组。根据两因子属性类别数的不同而构成2×2、2×c、r×c 列联表(r 为行因子的属性类别数,c 为列因子的属性类别数)。而适合性检验只按某一因子的属性类别将如性别、表现型等次数资料归组。

3、适合性检验按已知的属性分类理论或学说计算理论次数。独立性检验在计算理论次数时没有现成的理论或学说可资利用,理论次数是在两因子相互独立的假设下进行计算。

4、在适合性检验中确定自由度时,只有一个约束条件:各理论次数之和等于各实际次数之和,自由度为属性类别数减1。而在r×c列联表的独立性检验中,共有rc个理论次数,但受到以下条件的约束:a、rc个理论次数的总和等于个实际次数的总和;b、r个横行中的每一个横行理论次数总和等于该行实际次数的总和。但由于r个横行实际次数之和的总和应等于rc个实际次数之和,因而独立的行约束条件只有r-1 个;c、类似地,独立的列约束条件有c-1 个。因而在进行独立性检验时,自由度为rc-1-( r-1)-( c-1)=(r -1)( c-1),即等于(横行属性类别数-1)×(直列属性类别数-1)。

21.什么情况下2检验需作矫正?如何矫正?

在对次数资料进行2检验利用连续型随机变量2分布计算概率时,常常偏低,特别是当自由度为1时偏差较大。Yates(1934)提出了一个矫正公式,矫正后的值记为:计算公式为:

当自由度大于1时,(7-1)式的

2

分布与连续型随机变量

2分布相近似,这时,可不作连续性矫