2013-2014-2学期线性代数期末复习题
第一章
一、填空题
1.设A是主对角元为1,2,3,???n的n阶三角矩阵,则A= .
(E?A)-(E?A)A= . 2.
3.对于矩阵A=?-1-1?12?,当k? 时,A可逆. ??k1?4.已知A3?E,则A?1? . 5.将n阶方阵A的元素全部反号,则新的矩阵的行列式是 . 6.对于n阶方阵A,若7.若A是2阶方阵,且
A=5,则AATA?1? .
A=2,则(?2A)3= . 8.设A为三阶矩阵,且A?1,2A?1?3A?? .
9.在五阶行列式中a12a53a41a24a35的符号为 . 010.
0a200a100000? . 11. D?0a4000201000020090012?1010200000000001? . 0a3012. a100b40a2b300b2a30b100a42x1? . 13.f?x???x?x3x中x的系数是 . x14. 设n阶行列式D的值为a,将D中的元素都变号后得到行列式为D?,则D?= .
ab00?0.
15.若a,b为实数,则当a? , 且b? 时,?ba?10?1abccbddbcabddaac18. 设四阶行列式D4?,则A14?A24?A34?A44? . 1
二、计算.
(1)
?2?n2?1?????1???1,2?; (2) ?3?2?;
???3????2???(3) ??1,2?1 ; (4)
???3?????1??????21?1,1??????; ??2??????10?423???(5)设A?110,AB?A?2B, 求B;
????123????010?x121??(7)若?1,求x; (6)?100? ;
0242?001???001?1?11001?111??123?T(8)设A??11?1?? B???1?24?? 求3AB?2B及AB;
?????1?11??051??????10?k? 求A ; (10)a???1?2a423611bb21c; c2(9)设A??21?120(11)
315311 ; (12)
121211311113101b1 ; (13) 103aa0b0.
0ab0a0b0三、单项选择题 1.二阶行列式
k?12≠0的充分必要条件是( )
2k?1A.k?1; B.k?3; C.k?1且k?3; D.k?1或k?3.
2.设A为三阶矩阵,A?a?0,则其伴随矩阵A*的行列式 A*=( )
A.a; B.a2; C.a3; D.a4.
3.设A,B为同阶可逆矩阵,则以下结论正确的是( )
A.AB?BA;
B.A?B?B?A;
2
C.?AB??A?1B?1;
?1D.?A?B??A2?2AB?B2.
24.设A可逆,则下列说法错误的是( ). ..
A.存在B使AB?E; C.A相似于对角阵;
5.矩阵A??B.A?0;
D.A的n个列向量线性无关.
?21??的逆矩阵为( ). 10???01??11??0?1??01?; B.; C.; D.?????. ???1?2??11???1?2??12?A.?6.设A是4阶矩阵,则
A.??A=( ).
A; B.?4A; C.A; D.4A.
??37??,则A?( ).
?1?2?7.设2阶方阵A可逆,且A?1???27??27??2?7??37?A.??1?3?; B.?13?; C.??13?; D.?12?. ????????8.设?1?(1,2,1),?2?(0,5,3),?3?(2,4,2),则向量组?1,?2,?3的秩是( ).
A.0; B.1; C.2; D.3.
四、若A为n阶方阵,A-A-2E?0,证明A及A+2E可逆,并求A?1及(A?2E)?1 . 五、 求下列矩阵的逆矩阵?
2?a1223??????13? (1)?; (2)?1?10?; (3) ????25???121?????六、设A,B为n阶方阵,满足A?B?AB.
a2???(aa?12?an?an?0).
?1?30???(1)证明A?E为可逆矩阵; (2)若B??210?,求矩阵A.
?002???七、解矩阵方程。
?010??100??1?43??4?6??13???????(1)?X???; (2)?100?X?001???20?1?; ??25??21??001??010??1?20??????? 3