东北大学计算机组成原理课程设计报告书 下载本文

下载可编辑

计算机组成原理课程设计报告

班级: 班 : 学号:

完成时间:

一、课程设计目的

1.在实验机上设计实现机器指令及对应的微指令(微程序)并验证,从而进一步掌握微程序设计控制器的基本方法并了解指令系统与硬件结构的对应关系;

2.通过控制器的微程序设计,综合理解计算机组成原理课程的核心知识并进一步建立整机系统的概念;

3.培养综合实践及独立分析、解决问题的能力。

二、课程设计的任务

针对COP2000实验仪,从详细了解该模型机的指令/微指令系统入手,以实现乘法和除法运算功能为应用目标,在COP2000的集成开发环境下,设计全新的指令系统并编写对应的微程序;之后编写实现乘法和除法的程序进行设计的验证。

三、 课程设计使用的设备(环境) 1.硬件

? COP2000实验仪 ? PC机 2.软件

? COP2000仿真软件

四、课程设计的具体容(步骤)

1.详细了解并掌握COP 2000模型机的微程序控制器原理,通过综合实验来实现 该模型机指令系统的特点: ① 总体概述:

COP2000模型机包括了一个标准CPU所具备所有部件,这些部件包括:运算器ALU、累加器A、工作寄存器W、左移门L、直通门D、右移门R、寄存器组R0-R3、程序计数器PC、地址寄存器MAR、堆栈寄存器ST、中断向量寄存器IA、输入端口IN、输出端口寄存器OUT、程序存储器EM、指令寄存器IR、微程序计数器uPC、微程序存储器uM,以及中断控制电路、跳转控制电路。其中运算器和中断控制电路以及跳转控制电路用CPLD来实现,其它电路都是用离散的数字电路组成。微程序控制部分也可以用组合逻辑控制来代替。

模型机为8位机,数据总线、地址总线都为8位,模型机的指令码为8位,根据指令类型的不同,可以有0到2个操作数。指令码的最低两位用来选择R0-R3寄存器,在微程序控制方式中,用指令码做为微地址来寻址微程序存储器,找到执行该指令的微程序。而在组合逻辑控制方式中,按时序用指令码产生相应的控制位。在本模型机中,一条指令最多分四个状态周期,一个状态周期为一个时钟脉冲,每个状态周期产生不同的控制逻辑,实现模型机的各种功能。模型机有24位控制位以控制寄存器的输入、输出,选择运算器的运算功能,存储器的读写。

.专业.整理.

下载可编辑

模型机的缺省的指令集分几大类: 算术运算指令、逻辑运算指令、移位指令、数据传输指令、跳转指令、中断返回指令、输入/输出指令。 ② 模型机的寻址方式

表1 模型机的寻址方式

模型机的寻址方式 累加器寻址 寻址方式说明 操作数为累加器A 隐含寻址累加器A 参与运算的数据在R0-R3的寄存器中 参与运算的数据在存储器EM中,数据的地址在寄存器R0-R3中 参与运算的数据在存储器EM中,数据的地址为指令的操作数。 参与运算的数据为指令的操作数。 指令举例 CPL A OUT 指令说明 将累加器A的值取反 将累加器A的值输出到输出端口寄存器OUT 将寄存器R0的值加上累加器A的值,再存入累加器A中 将寄存器R0的值作为地址,把存储器EM中该地址的容送入累加器A中 将存储器EM中40H单元的数据与累加器A的值做逻辑与运算,结果存入累加器A 从累加器A中减去立即数10H,结果存入累加器A 寄存器寻址 ADD A,R0 寄存器间接寻址 MOV A,R0 存储器直接寻址 AND A,40H 立即数寻址 SUB A,#10H COP2000模型机指令的最低两位(IR0和IR1)用来寻址R0~R3四个寄存器;IR2和IR3与ELP微控制信号,Cy和Z两个程序状态信号配合,控制PC的置数即程序的转移。各种转移的条件判断逻辑如下所示: PC 置数逻辑

当ELP=1时,不允许PC被预置 当ELP=0时

当IR3=1时,无论Cy和Z什么状态,PC被预置 当IR3=0时

若IR2=0,则当Cy=1时PC被预置 若IR2=1,则当Z=1时PC被预置

本模型机时序控制采用不定长机器周期的同步控制方式,一条指令最多分四个节拍。 系统提供的默认指令系统包括以下7类指令:

算术运算指令: .专业.整理.

逻辑运算指令: 数据传输指令: 跳转指令: 下载可编辑

ADD A, R? ADD A, R? ADD A, MM ADD A, #II ADDC A, R? ADDC A, R? ADDC A, MM ADDC A, #II SUB A, R? SUB A, R? SUB A, MM SUB A, #II SUBC A, R? SUBC A, R? SUBC A, MM SUBC A, #II

AND A, R? AND A, R? AND A, MM AND A, #II OR A, R? OR A, R? OR A, MM OR A, #II CPL A 移位指令: RR A RL A RRC A RLC A MOV A, R? MOV A, R? MOV A, MM MOV A, #II MOV R?, A MOV R?, A MOV MM, A MOV R?, #II JC MM JZ MM JMP MM CALL MM RET 中断返回指令: RETI 输入/输出指令: READ MM WRITE MM IN OUT 该模型机微指令系统的特点(包括其微指令格式的说明等): ① 总体概述

微命令是用直接表示法表示的,其特点是操作控制字段中的每一位代表一个微命令。这种方法的优点是简单直观,其输出直接用于控制。缺点是微指令字较长,因而使控制存储器容量较大。

② 微指令格式的说明

模型机有24位控制位以控制寄存器的输入、输出,选择运算器的运算功能,存储器的读写。微程序控制器由微程序给出24位控制信号,而微程序的地址又是由指令码提供的,也就是说24位控制信号是由指令码确定的。该模型机的微指令的长度为24位,其中微指令中只含有微命令字段,没有微地址字段。其中微命令字段采用直接按位的表示法,哪位为0,表示选中该微操作,而微程序的地址则由指令码指定。这24位操作控制信号的功能如表2所示:(按控制信号从左到右的顺序依次说明)

表2 微指令控制信号的功能

操作控制信号 XRD EMWR EMRD PCOE EMEN 控 制 信 号 的 说 明 外部设备读信号,当给出了外设的地址后,输出此信号,从指定外设读数据。 程序存储器EM写信号。 程序存储器EM读信号。 将程序计数器PC的值送到地址总线ABUS上。 将程序存储器EM与数据总线DBUS接通,由EMWR和EMRD决定是将DBUS数据写到EM中,还是从EM读出数据送到DBUS。 .专业.整理.