不等式的证明方法-毕业论文解析 下载本文

江西师范大学09届学士学位毕业论文

江西师范大学数学与信息科学学院

学士学位论文

不等式的证明方法 Method to prove inequality

姓 名: 学 号: 200907010059 学 院: 数学与信息科学学院

专 业: 数学与应用数学

指导老师: 完成时间: 2013年3月9日

江西师范大学09届学士学位毕业论文

不等式的证明方法

***

【摘要】不等式证明在数学中有着举足轻重的作用和地位,是进行计算、推理、

数学思想方法渗透的重要题材,是数学内容的重要组成部分,在不等式的证明过程中需要用到诸多的数学思想,结合了许多重要的数学内容。在本论文中,我总结了一些数学中证明不等式的方法.在初等数学不等式的证明中经常用到的有比较法、作商法、分析法、综合法、数学归纳法、反证法、放缩法、换元法、判别式法、函数法、几何法等等.在高等数学不等式的证明中经常利用中值定理、泰勒公式、拉格朗日函数、以及一些著名不等式,如:均值不等式、柯西不等式、詹森不等式、赫尔德不等式等等.从而使不等式的证明方法更加的完善,有利于我们进一步的探讨和研究不等式的证明. 通过学习这些证明方法,可以帮助我们解决一些实际问题,培养逻辑推理论证能力和抽象思维的能力以及养成勤于思考、善于思考的良好学习习惯。

【关键词】不等式 比较法 数学归纳法 函数

1

江西师范大学09届学士学位毕业论文

Method to prove inequality

*******

【Abstract】That inequalities in mathematics was very important role and status

and is evaluated, reasoning, mathematical way of thinking is important to infiltrate into the subject is math content of the important component of the inequalities in the process needs to be used in many mathematical thought, with many important mathematical content。In this paper, I summarized some mathematical inequality proof methods. Inequality in elementary mathematical proof commonly use in comparative law, for commercial, analysis, synthesis, mathematical induction, the reduce- tion to absurdity, discriminant, function, Geometry, and so on. Inequality in higher mathematics proof often use the intermediate value theorem, Taylor formula, the Lagranga function and some famous inequality, such as : mean inequality, Kensen inequality, Johnson in- equality, Helder inequality, and so on. Inequality proof methods get more efficient and help us further explore and study the inequality proof. Through the study of these proof methods, we can solve some practical problems, develop logical reasoning ability and demonstrated the ability to abstract thinking and grow hard thinking and good at thinking of the good study habit。

【Key words】inequality comparative law mathematical induction function

2