学习资料
知识概念
1.平行四边形定义: 有两组对边分别平行的四边形叫做平行四边形。
2.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。
1.两组对边分别相等的四边形是平行四边形 3.平行四边形的判定 ○A2.对角线互相平分的四边形是平行四边形; ○D3 ○.两组对角分别相等的四边形是平行四边形; 4.一组对边平行且相等的四边形是平行四边形。 C○B4.三角形的中位线平行于三角形的第三边,且等于第三边的一半。 5.直角三角形斜边上的中线等于斜边的一半。 6.矩形的定义:有一个角是直角的平行四边形。
7.矩形的性质: 矩形的四个角都是直角;矩形的对角线平分且相等。AC=BD
1.有一个角是直角的平行四边形叫做矩形。 8.矩形判定定理: ○
2.对角线相等的平行四边形是矩形。 ○
3.有三个角是直角的四边形是矩形。 ○
9.菱形的定义 :邻边相等的平行四边形。
10.菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
1.一组邻边相等的平行四边形是菱形。 11.菱形的判定定理:○
2.对角线互相垂直的平行四边形是菱形。 ○
3.四条边相等的四边形是菱形。 ○
12.S菱形=1/2×ab(a、b为两条对角线)
13.正方形定义:一个角是直角的菱形或邻边相等的矩形。
14.正方形的性质:四条边都相等,四个角都是直角。 正方形既是矩形,又是菱形。
15.正方形判定定理: 1.邻边相等的矩形是正方形。 2.有一个角是直角的菱形是正方形。 精品文档
学习资料
16.梯形的定义: 一组对边平行,另一组对边不平行的四边形叫做梯形。 17.直角梯形的定义:有一个角是直角的梯形 18.等腰梯形的定义:两腰相等的梯形。
19.等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。 20.等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。
本章内容是对平面上四边形的分类及性质上的研究,要求学生在学习过程中多动手多动脑,把自己的发现和知识带入做题中。因此教师在教学时可以多鼓励学生自己总结四边形的特点,这样有利于学生对知识的把握。
第二十章、数据的分析
知识概念
1.加权平均数:加权平均数的计算公式。 权的理解:反映了某个数据在整个数据中的重要程度。
2.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
3. 众数:一组数据中出现次数最多的数据就是这组数据的众数(mode)。 4. 极差:组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。 5.方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
1s2?[(x1?x)2?(x2?x)2???(xn?x)2]
n 本章内容要求学生在经历数据的收集、整理、分析过程中发展学生的统计意识和数据处理的方法与能力。在教学过程中,以生活实例为主,让学生体会到数据在生活中的重要性。
九年级数学(上)知识点
人教版九年级数学上册主要包括了二次根式、二元一次方程、旋转、圆和概率五个章节的内容。 精品文档
学习资料
第二十一章、二次根式
知识概念
二次根式:一般地,形如√ā(a≥0)的代数式叫做二次根式。当a>0时,√a表示a的算数平方根,其中√0=0 对于本章内容,教学中应达到以下几方面要求:
1. 理解二次根式的概念,了解被开方数必须是非负数的理由; 2. 了解最简二次根式的概念; 3. 理解并掌握下列结论: 1)
是非负数; (2)
; (3)
;
4. 掌握二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算; 5. 了解代数式的概念,进一步体会代数式在表示数量关系方面的作用。
第二十二章、一元二次根式
二.知识概念
一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,?经过整理,?都能化成如下形式ax2+bx+c=0(a≠0).这种精品文档
学习资料
形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
本章内容主要要求学生在理解一元二次方程的前提下,通过解方程来解决一些实际问题。 (1)运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.
(2)配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根. 介绍配方法时,首先通过实际问题引出形如
的方程。这样的方程可以化为更为简单的形如
的
方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如举例说明一元二次方程可以化为形如
的方程。然后
的方程,引出配方法。最后安排运用配方法解一元二
次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。 (3)一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:
解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,?将a、b、c代入式子
?b?b2?4acx=就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、
2a除、乘方、开方,这体现了公式的统一性与和谐性。)这个式子叫做一元二次方程的求根公式.利用求根公式解一元二次方程的方法叫公式法.
第二十三章、旋转
知识概念
1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。这个定点叫做旋转中心,转动的角度叫做旋转角。(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。)
2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。 3.中心对称图形与中心对称:
中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心精品文档
学习资料 对称图形。
中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。
4.中心对称的性质:
关于中心对称的两个图形是全等形。
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。 关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。
本章内容通过让学生经历观察、操作等过程了解旋转的概念,探索旋转的性质,进一步发展空间观察,培养几何思维和审美意识,在实际问题中体验数学的快乐,激发对学习学习。
第二十四章、圆
知识概念
1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。
2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。
3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4.内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。 5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。
6.圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。
7.圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。
8.直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
9.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共精品文档