《管理运筹学》复习题及参考答案 - 图文 下载本文

五、按各题要求。建立线性规划数学模型

1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:

根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。月销售分别为250,280和120件。 问如何安排生产计划,使总利润最大。

2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋90根,长度为4米的钢筋60根,问怎样下料,才能使所使用的原材料最省?

1. 某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示: 起运时间 服务员数 2—6 4 6—10 8 10一14 10 14—18 7 18—22 12 22—2 4 每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少?

第三章 线性规划的基本方法

一、填空题

1.线性规划的代数解法主要利用了代数消去法的原理,实现基可行解的转换,寻找最优解。

-1-1

2.标准形线性规划典式的目标函数的矩阵形式是_ maxZ=CBBb+(CN-CBBN)XN 。 3.对于目标函数极大值型的线性规划问题,用单纯型法求解 时,当基变量检验数δj_≤_0时,当前解为最优解。

4.用大M法求目标函数为极大值的线性规划问题时,引入的人工变量在目标函数中的系数应为-M。

5.在单纯形迭代中,可以根据最终_表中人工变量不为零判断线性规划问题无解。 6.在线性规划典式中,所有基变量的目标系数为0。

7.当线性规划问题的系数矩阵中不存在现成的可行基时,一般可以加入人工变量构造可行基。

8.在单纯形迭代中,选出基变量时应遵循最小比值θ法则。

9.线性规划典式的特点是基为单位矩阵,基变量的目标函数系数为0。

10.对于目标函数求极大值线性规划问题在非基变量的检验数全部δj≤O、问题无界时,问

题无解时情况下,单纯形迭代应停止。

11.在单纯形迭代过程中,若有某个δk>0对应的非基变量xk的系数列向量Pk_≤0_时,则此问题是无界的。

12.在线性规划问题的典式中,基变量的系数列向量为单位列向量_ 13.对于求极小值而言,人工变量在目标函数中的系数应取-1 14.(单纯形法解基的形成来源共有三 种 15.在大M法中,M表示充分大正数。 二、单选题

1.线性规划问题C

2.在单纯形迭代中,出基变量在紧接着的下一次迭代中B立即进入基底。 A.会 B.不会 C.有可能 D.不一定

3.在单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中B。

A.不影响解的可行性B.至少有一个基变量的值为负C.找不到出基变量D.找不到进基变量

4.用单纯形法求解极大化线性规划问题中,若某非基变量检验数为零,而其他非基变量检验数全部<0,则说明本问题B 。

A.有惟一最优解 B.有多重最优解 C.无界 D.无解

5.线性规划问题maxZ=CX,AX=b,X≥0中,选定基B,变量Xk的系数列向量为Pk,则在关于基B的典式中,Xk的系数列向量为_ D

T-1

A.BPK B.BPK C.PKB D.BPK 6.下列说法错误的是B

A. 图解法与单纯形法从几何理解上是一致的 B.在单纯形迭代中,进基变

量可以任选

C.在单纯形迭代中,出基变量必须按最小比值法则选取 D.人工变量离开基底后,不会再进基

7.单纯形法当中,入基变量的确定应选择检验数 C

A绝对值最大 B绝对值最小 C 正值最大 D 负值最小 8.在单纯形表的终表中,若若非基变量的检验数有0,那么最优解 A

A 不存在 B 唯一 C 无穷多 D 无穷大

9.若在单纯形法迭代中,有两个Q值相等,当分别取这两个不同的变量为入基变量时,获得的结果将是 C

A 先优后劣 B 先劣后优 C 相同 D 会随目标函数而改变 10.若某个约束方程中含有系数列向量为单位向量的变量,则该约束方程不必再引入 C A 松弛变量 B 剩余变量 C 人工变量 D 自由变量 11.在线性规划问题的典式中,基变量的系数列向量为 D

A 单位阵 B非单位阵 C单位行向量 D单位列向量 12.在约束方程中引入人工变量的目的是 D

A 体现变量的多样性 B 变不等式为等式 C 使目标函数为最优 D 形成一个单位阵 13.出基变量的含义是 D A 该变量取值不变 B该变量取值增大 C 由0值上升为某值 D由某值下降为0 14.在我们所使用的教材中对单纯形目标函数的讨论都是针对 B 情况而言的。 A min B max C min + max D min ,max任选

15.求目标函数为极大的线性规划问题时,若全部非基变量的检验数≤O,且基变量中有人工变量时该问题有 B

A无界解 B无可行解 C 唯一最优解 D无穷多最优解 三、多选题

1. 对取值无约束的变量xj。通常令xj=xj’- x”j,其中xj’≥0,xj”≥0,在用单纯形

法求得的最优解中,可能出现的是ABC

2.线性规划问题maxZ=x1+CX2

其中4≤c≤6,一1≤a≤3,10≤b≤12,则当_ BC时,该问题的最优目标

函数值分别达到上界或下界。

A.c=6 a=-1 b=10 B.c=6 a=-1 b=12 C.c=4 a=3 b=12 D.c=4 a=3 b=12 E.c=6 a=3 b=12

(1)(2)

3.设X,X是用单纯形法求得的某一线性规划问题的最优解,则说明ACDE。

A.此问题有无穷多最优解 B.该问题是退化问题 C.此问题的全部最优解可表

(1)(2)(1)(2)(1)(2)

示为λX+(1一λ)X,其中0≤λ≤1 D.X,X是两个基可行解E.X,X的基变量个数相同

4.某线性规划问题,含有n个变量,m个约束方程,(m

M

A.该问题的典式不超过CN个B.基可行解中的基变量的个数为m个C.该问题一定存在可

M

行解D.该问题的基至多有CN=1个E.该问题有111个基可行解

5.单纯形法中,在进行换基运算时,应ACDE。A.先选取进基变量,再选取出基变量B.先选出基变量,再选进基变量C.进基变量的系数列向量应化为单位向量 D.旋转变换时采用的矩阵的初等行变换E.出基变量的选取是根据最小比值法则

6.从一张单纯形表中可以看出的内容有ABCE。A.一个基可行解B.当前解是否为最优解C.线性规划问题是否出现退化D.线性规划问题的最优解E.线性规划问题是否无界 7.单纯形表迭代停止的条件为( AB )

A 所有δj均小于等于0 B 所有δj均小于等于0且有aik≤0 C 所有aik>0 D 所有bi≤0

8.下列解中可能成为最优解的有( ABCDE )

A 基可行解 B 迭代一次的改进解 C迭代两次的改进解 D迭代三次的改进解 E 所有检验数均小于等于0且解中无人工变量

9、若某线性规划问题有无穷多最优解,应满足的条件有( BCE )

A Pk<Pk0 B非基变量检验数为零 C基变量中没有人工变量 Dδj<O E所有δj≤0

10.下列解中可能成为最优解的有( ABCDE )

A基可行解 B迭代一次的改进解 C迭代两次的改进解 D迭代三次的改进解E所有检验数均小于等于0且解中无人工变量 四、名词、简答

1、人造初始可行基:当我们无法从一个标准的线性规划问题中找到一个m阶单位矩阵时,

通常在约束方程中引入人工变量,而在系数矩阵中凑成一个m阶单位矩阵,进而形成的一个初始可行基称为人造初始可行基。 2、单纯形法解题的基本思路? 可行域的一个基本可行解开始,转移到另一个基本可行解,并且使目标函数值逐步得到改善,直到最后球场最优解或判定原问题无解。 五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相当

于图解法可行域中的哪一个顶点。

六、用单纯形法求解下列线性规划问题: