不断移走热量以使吸收在等温下进行。进气量为1000 m3 ,出口气体中含氨0.01(摩尔分数)。试求被吸收的氨量(kg)和出口气体的体积(m3)。
解 惰性气体量V?1000?0.88?880m3,进口中 NH3 之量为120m3,出口中NH3 之量为120?0.12?0.010.99?9m3,于是总出气量= 880 + 9 =889m3,被吸收的NH3量为
0.120.881000?101325889?101325-0.01??4544mol,为 77.3kg。
8.314?2988.314?298分析 (1) 进行物料衡算时应以摩尔数或者质量为基准,一般不以体积为基准。此
处由于温度和压力均不变,故摩尔数的变化正比于体积的变化,所以以体积作为衡算的基准。
(2) 本题是并流还是逆流?有区别吗 ?
(3) 如何才能不断移走热量? 该用填料塔还是板式塔 ? (4) 不移走热量对吸收有什么影响 ?
6-5 一浅盘内存有2mm厚的水层,在20℃的恒定温度下靠分子扩散逐渐蒸发到大气中。假定扩散始终是通过一层厚度为5mm的静止空气膜层,此空气膜层以外的水蒸气分压为零。扩散系数为2.6×10-5m2/s,大气压强为1.013×105Pa。求蒸干水层所需时间。
解:本题中水层Z的变化是时间?的函数,且与扩散速率有关。
NA?DPpA1?pA2pB2 lnRTZpB1?pB2pB1查教材附录水的物理性质得,20℃时水的蒸汽压为2.3346kPa。已知条件为:
pA1?101.3kPa,pA2?0kPa,pB2?101.3kPa,pB1?101.3?2.3346?98.97kPa,P?pA2?pB2?101.3kPa,代入上式得:
DPpA1?pA2pB22.60?10-5?101.3101.3?0101.3NA?ln??lnRTZpB1?pB2pB18.314?293?0.005101.3?98.9798.97 ?5.03?10-6kmol/m2?s??水的摩尔质量M?18kg/kmol,设垂直管截面积为A,在d?时间内汽化的水量应等于水扩散出管口的量,即
dZNAM5.03?10?6?18NAAd??AdZ 则???9.054?10?8m/s
Md??1000?在??0,Z?0到??0,Z?2?10?3m之间积分,得
2?10-3???2.21?104s -89.054?106-6 含组分A为0.1的混合气,用含A为0.01(均为摩尔分数)的液体吸收其中的A。已知A在气、液两相中的平衡关系为y?x,液气比为0.8,求: (1)
L?1.5G逆流操作时,吸收液出口最高组成是多少?此时的吸收率是多少?若,
各量又是多少?分别在y-x图上表示;
(2) 若改为并流操作,液体出口最高组成是多少?此时的吸收率又是多少? 解 (1) 逆流操作(题6-6 图(a))时,已知
题6-6 图
X2?0.010.1?0.01,Y1??0.11
1?0.011?0.1① 当LV?0.8?m?1,以及塔高无穷高时,在塔底达到两相平衡(题8-9图(b)),
X1max?X1*?Y1m?0.11。根据物料衡算可知
Y2?Y1?L*X1?X2?0.11?0.8??0.11?0.01??0.03 V??此时 , 吸收率为
E?0.11?0.03?72.7%
0.11② 当LV?1.5?m?1,以及塔高无穷高时,在塔顶达到吸收平衡(题 8-9图(b)),
Y2min?Y2*?mX2?0.01。仍可以根据物料衡算L?X1?X2??V?Y1?Y2min?,求出
X1?0.077
E?0.11?0.01?90.9%
0.11(2) 并流操作且LV?0.8时(题8-9 图(c)),因为H??,所以有
Y1?mX1
根据操作线关系,有
Y2?Y1L??
X2?X1V式①,②联立,求得:
X1?Y1?0.0655
于是
E?0.11?0.0655?40.5%
0.11分析逆流吸收操作中,操作线斜率比平衡线斜率大时,气液可能在塔顶呈平衡;此时吸收率最大,但吸收液浓度不是最高。
操作线斜率小于平衡线斜率时,气液在塔底呈平衡;吸收液浓度是最高的,但吸收率不是最高。
6-7 用水吸收气体中的SO2 ,气体中SO2 的平均组成为0.02(摩尔分数),水中SO2 的平均浓度为1g/1000g。塔中操作压力为10.13kPa(表压),现已知气相传质分系数kG=0.3×10-2kmol/(m2·h·kPa),液相传质分系数kL= 0.4 m/h。操作条件下平衡关系y?50x。求总传质系数KY(kmol/(m2·h))。 解 根据
?yy*?y?y*KYpy?y*KYpA?p*ANA?KYY?Y?KY??1?y?1?y*???KY?1?y?1?y*?p?1?y?1?y*?p?1?y?1?y*???*?????????和
NA?KGpA?p*A
得
??KY?pKG?1?y?1?y*
164?2.81?10?4,因此
164?100018??现已知p?111.4kPa,y?0.02,y*?mxA?50?要先根据下式求出KG才能求出KY:
111 ??KGkGHkL因此还要求出 H:
cAxAc1000183???0.01kmol/m?kPa *pApmxA111.4?50H???于是便可求出
KG?0.0017kmol/m2?h?kPa
和
??KY?0.187kmol/m2?h
分析 此题主要练习各种传质系数之间的转换关系,第二目的是了解各系数的量级。
6-8在1.013×105Pa、27℃下用水吸收混于空气中的甲醇蒸气。甲醇在气、液两相中的浓度很低,平衡关系服从亨利定律。已知H=0.511 kPa ·m3/kmol,气膜吸收分系数kG=1.55×105kmol/(m2·s·kPa),液膜吸收分系数kL=2.08×105 (m/s)。试求吸
??