分析 首先要确定中心圆内的数,设中心○内的数是a,那么,三条线段上的总和是1+2+3+4+5+6+7+2a=28+2a,由于三条线段上的和相等,所以(28+2a)除以3应该没有余数。由于28÷3=9??1,那么2a除以3应该余2,因此,a可以为1、4或7。当a=1时,(28+2×1)÷3-1=9,即每条线段上其他两数的和是9,因此,有这样的填法。
练 习 四
1,将1——9填入下图的○中,使横、竖行五个数相加的和都等于25。
2,将1——11这十一个数分别填进下图的○里,使每条线上3个○内的数的和相等。
3,将1——8这八个数分别填入下图○内,使外圆四个数的和,内圆四个数的和以及横行、竖行上四个数的和都等于18。
36
例题5 如下图(a)四个小三角形的顶点处有六个圆圈。如果在这些圆圈中分别填上六个质数,它们的和是20,而且每个小三角形三个顶点上的数的和相等。问这六个质数的积是多少?
分析 设每个小三角形三个顶点处○内数的和为X。因为中间的小三角形顶点处的数在求和时都用了三次,所以,四个小三角形顶点处数的总和是4X=20+2X,解方程得X=10。由此可知,每个小三角形顶点处的三个质数的和是10,这三个质数只能是2、3、5。因此这6个质数的积是2×2×3×3×5×5=900。如图(b)。
练习五
1,将九个不同的自然数填入下面方格中,使每行、每列、每条对角线上三个数的积都相等。
37
2,将1——9九个自然数分别填入下图的九个小三角形中,使靠近大三角形每条边上五个数的和相等,并且尽可能大。这五个数之和最大是多少?
3,将1——9九个数分别填入下图○内,使外三角形边上○内数之和等于里面三角形边上○内数之和。
第11周 周期问题
专题简析:
周期问题是指事物在运动变化的发展过程中,某些特征循环往复出现,其连续两次出现所经过的时间叫做周期。在数学上,不仅有专门研究周期现象的分支,而且平时解题时也常常碰到与周期现象有关的问题。这些数学问题只要我们发展某种周期现象,并充分加以利用,把要求的问题和某一周期的等式相对应,就能找到解题关键。
例题1 流水线上生产小木球涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后又依次5红、4黄、3绿、2黑、1白??如此涂下去,到2001个小球该涂什么颜色?
分析 根据题意可知,小木球涂色的次序是5红、4黄、3绿、2黑、1白,即5+4+3+2+1=15个球为一个周期,不断循环。因为2001÷15=133??6,也就是经过133个周期还余6个,每个周期中第6个是黄的,所以第2001个球涂黄色。
38
练习一
1,跑道上的彩旗按“三面红、两面绿、一面黄”的规律插下去,第50面该插什么颜色?
2,有一串珠子,按4个红的,3个白的,2个黑的顺序重复排列,第160个是什么颜色?
3,1/7=0.142857142857??,小数点后面第100个数字是多少?
例题2 有47盏灯,按二盏红灯、四盏蓝灯、三盏黄灯的顺序排列着。最后一盏灯是什么颜色的?三种颜色的灯各占总数的几分之几?
分析 (1)我们把二盏红灯、四盏蓝灯、三盏黄灯这9盏灯看作一组,47÷9=5(组)??2(盏),余下的两盏是第6组的前两盏灯,是红灯,所以最后一盏灯是红灯;
(2)由于47÷9=5(组)??2(盏),所以红灯共有2×5+2=12(盏),占总数的
122015;蓝灯共有4×5=20(盏),占总数的;黄灯共有3×5=15(盏),占总数的。 474747练习二
1,有68面彩旗,按二面红的、一面绿的、三面黄的排列着,这些彩旗中,红旗占黄旗的几分之几?
2,黑珠和白珠共2000颗,按规律排列着:○●○○○●○○○●○○??,第2000颗珠子是什么颜色的?其中,黑珠共有多少颗?
3,在100米长的跑道两侧每隔2米站着一个同学。这些同学以一端开始,按先两个女生,再一个男生的规律站立着。这些同学中共有多少个女生?
例题3 2001年10月1日是星期一,那么,2002年1月1日是星期几?
分析 一个星期是7天,因此7天为一个周期。10月1日是星期一,是第一个周期的第一天,再过7天即10月8日也是星期一。计算天数时为了方便,我们采用“算尾不算头”的方法,例如10月8日就用(8-1)÷7=1,没有余数说明8号仍是星期一。题中说从2001年10月1日到2002年1月1日,要经过92天,92÷7=13??1,余1天就是从星期一往后数一天,即星期二。 练习三
39
1,2002年1月1日是星期二,2002年的六月一日是星期几?
2,如果今天是星期五,再过80天是星期几?
3,以今天为标准,算一算今年自己的生日是星期几?
例题4 将奇数如下图排列,各列分别用A、B、C、D、E为代表,问:2001所在的列以哪个字母为代表?
A B C D E 1 3 5 7 15 13 11 9
17 19 21 23 31 29 27 25
? ? ? ? ? ? ? ?
分析 这列数按每8个数一组有规律排列着。2001是这一列数中的第1001个数,1001÷8=125??1,即2001是这列数中第126组的第一个数,所以它所在的那一列是以字母B为代表的。 练习四
1,将偶数2、4、6、8、??按下图依次排列,2014出现在哪一列?
A B C D E 8 6 4 2
10 12 14 16 24 22 20 18
26 28 30 32 ? ? ? ?
? ? ? ?
2,把自然数按下列规律排列,865排在哪一列? A B C D 1 2 3
6 5 4 7 8 9
12 11 10 ? ? ? ? ? ?
40