(完整版)正项级数收敛性判别法的推广本科毕业论文 下载本文

正项级数收敛性判别法的推广

摘要:正项级数收敛的判别法在级数的收敛法中占有极其重要的地位.常

见的判别法有比较判别法,达朗贝尔比值判别法,柯西判别法,高斯判别法,柯西积分判别法等.对于上述判别法,它们都有一定的条件限制,为了找到更简单,适用条件更广的判别法,国内外学者或者在一般判别法的基础上做了推广或者提出了一些新的判别法.

近几年,关于正项级数收敛性判别法又有了一些新的研究,主要是针对一些新判别法的适用条件进行了讨论.本文主要分两部分对正项级数的判别法进行了推广,第一部分对比值判别法进行了推广,给出了比值判别法在失效情况下的判别方法,这也是本文的主要部分,第二部分对比较判别法进行了推广.这些推广的新的判别法解决了原判别法的条件限制,使其更具一般性,适用性更广.

关键词:正项级数;收敛性;发散性;判别法

A Generalization of Convergence Criterion for

Positive Progressions

Yang Rui

(0301 Mathematics and Applied Mathematics School of Science )

The instructor: Song Wen-qing

Abstract: Convergence Criterion for Positive Progressions holds the

extremely important status in the progression. The common criterions include the comparison distinction law, reaches the bright Bell ratio distinction law, west the tan oak distinguishes the law, Gauss distinguishes the law, west the tan oak the integral distinction law and so on, but these distinction laws all have the certain condition limit. In order to find out more simply and more widely-used distinction laws, domestic and foreign scholars have made some promotion or worked out some new distinction laws.

In recent years, there are several new researches about positive progressions astringency distinguished the law mainly aiming at discussing applicable requirements of new distinction law. This article was mainly divided in 2 parts to carry on the promotion of the series of positive progressions distinction law. The first part promotes specific value distinction law as well as shows distinguishable methods when it doesn’t work. It is also the main part of this work.The second part carries on the promotion of the comparison distinction law and it uses the corresponding distinction law to judge the series of positive progressions astringency. These new distinction laws have solved the require mental limits of the original distinction laws making them more general, making their serviceability broader.

Keywords: positive progression series; convergence; divergence; criterion

1 引言

正项级数收敛的判别法在级数的收敛法中占有极其重要的地位.常见的判别法有比较判别法,达朗贝尔比值判别法,柯西判别法,高斯判别法,柯西积分判别法等.由于条件的限制,在判断某些类型的题目时会失效,所以必须要寻找一些新的判别法来解决这些题本文主要对比较判别法、达朗贝尔判别法进行了推广.下面先介绍比较判别法、达朗贝尔判别法以及正项级数收敛性的相关定理.

定理正项级数收敛的充要条件是:部分和数列有界,即存在某正数M,对

一切正整数n有

定理(比较原则)设和是两个正项级数,如果存在某正数N,对一切n>N

都有,

(i)若级数收敛,则级数也收敛; (ii)若级数发散,则级数也发散.

定理设为正项级数,且存在某正整数及常数q(0

(i)若对一切n>,成立不等式 则级数收敛.

(ii)若对一切n>,成立不等式 则级数发散.

定理若为正项级数,且

(i)当q<1 时,级数收敛; (ii)当q>1或q=时,级数发散.

2达朗贝尔判别法的推广与应用

2.1达朗贝尔判别法的一类推广与应用

由达朗贝尔判别法判别法极限形式知,当时,正项级数可能收敛也可能发散,我们无法直接用达朗贝尔判别法判别法判断其敛散性,此时这种判别法失效,为了解决这一问题,给出新的判别法.新的判别法适用条件更广,运算更简洁.

2.1.1达朗贝尔判别法判别法的第一种推广 引理正项级数若,且则 (i) 当p<时,则级数收敛 (ii) 当p>时,则级数发散

定理1 若,则级数收敛当且仅当收敛(其中m是大于1的正整数) 证明:(1)设则

<()+()+()++()

<++

n=?m?1??a1?mam???mnam?

所以若级数收敛,级数也收敛;

2n(2)=a1??a2???am??(am?1???am)??(a?m?1?n???am)

m?1??>

m?a?ma11m?m2am2???mnamn ?m2am2???mnamn

?=

?m?1?m?a?mam?所以若级数发散,级数也发散.

由(1)(2)得,级数收敛当且仅当收敛.

对于一般项收敛较慢的级数,定理1给出了一个判别法,观其条件还可以进行推广,得到更一般的形式,用定理的形式叙述如下: 定理2:正项级数,若,存在,使得,则

(1)当p<时,则级数收敛 (2)当p>时,则级数发散 证明:令,,

由定理知与同收敛,与同收敛,所以与同收敛

?ukm?1ukmm?11kukm?11vm?1??m?? kkukmkvm所以 limnk?1n??ank1vm?1?lim??p k??ankvm即 =

a当 limkn?i?pi?i?1,2,?,K?n??an?pi?1Ki?p

当 时,,故级数收敛,从而收敛; 当 时,,故级数发散,从而发散. 证明完毕. 2.1.2应用举例 例1:考察级数是否收敛. 解: 由定理,取,

n2?nlnmnlnmn1p?lim3m3?lim? mmn??nlnn???n??3lnn?3当时,,级数收敛; 当时,,级数发散. 例2:考察级数是否收敛. 解:p?limn?n??an2an?limn?n??n1?1n?n?121?n2?limnn2?2?1n2nn??