新课程下如何做好初高中数学教学衔接 下载本文

生数学思维的兴奋灶,也就是更大程度地预防学生思维障碍的产生。教师可以帮助学生进一步明确学习的目的性,针对不同学生的实际情况,因材施教,分别给他们提出新的更高的奋斗目标,使学生有一种“跳一跳,就能摸到桃”的感觉,提高学生学好高中数学的信心。

例:高一年级学生刚进校时,一般我们都要复习一下二次函数的内容,而二次函数中最大、最小值尤其是含参数的二次函数的最大、小值的求法学生普遍感到比较困难,为此我作了如下题型设计,对突破学生的这个难点问题有很大的帮助,而且在整个操作过程中,学生普遍(包括基础差的学生)情绪亢奋,思维始终保持活跃。 设计如下:

1)求出下列函数在x∈[0,3]时的最大、最小值: ①y=(x-1)2+1,②y=(x+1)2+1,③y=(x-4)2+1 2)求函数y=x2-2ax+a2+2,x∈[0,3]时的最小值。 3)求函数y=x2-2x+2,x∈[t,t+1]的最小值。

上述设计层层递进,每做完一题,适时指出解决这类问题的要点,大大地调动了学生学习的积极性,提高了课堂效率。

2、重视数学思想方法的教学,指导学生提高数学意识。数学意识是学生在解决数学问题时对自身行为的选择,它既不是对基础知识的具体应用,也不是对应用能力的评价,数学意识是指学生在面对数学问题时该做什么及怎么做,至于做得好坏,当属技能问题,有时一些技能问题不是学生不懂,而是不知怎么做才合理,有的学生面对数学问题,首先想到的是套那个公式,模仿那道做过的题目求解,对没

第6页

见过或背景稍微陌生一点的题型便无从下手,无法解决,这是数学意识落后的表现。数学教学中,在强调基础知识的准确性、规范性、熟练程度的同时,我们应该加强数学意识教学,指导学生以意识带动双基,将数学意识渗透到具体问题之中。如:设x2+y2=25,求u=8y?6x?50?8y?6x?50的取值范围。若采用常规的解题思路,μ的取值范围不大容易求,但适当对u进行变形:

u?(x?3)2?(y?4)2?(x?3)2?(y?4)2转而构造几何图形容易求得u∈

[6,610],这里对u的适当变形实际上是数学的转换意识在起作用。

因此,在数学教学中只有加强数学意识的教学,如“因果转化意识”“类比转化意识”等的教学,才能使学生面对数学问题得心应手、从容作答。所以,提高学生的数学意识是突破学生数学思维障碍的一个重要环节。

总之,如何做好初,高数学衔接,是有待于我们在今后的教学不断创新和研究的课题,为使学生较快适应高中新教材的学习、搞好初高中数学衔接,我将继续努力。

第7页