最新高中理科数学公式大全(完整版)汇编 下载本文

高中数学公式大全(最新整理版)

§01. 集合与简易逻辑

1. 元素与集合的关系

x?A?x?CUA,x?CUA?x?A. 2.德摩根公式

CU(AB)?CUACUB;CU(AB)?CUACUB.

3.包含关系

AB?A?AB?B?A?B?CUB?CUA

?ACUB???CUAB?R

4.容斥原理

card(AB)?cardA?cardB?card(AB).

5.集合{a1,a2,,an}的子集个数共有2n 个;真子集有2n–1个;非空子集有2n –1个;非空的真子集有

2n–2个.

6.二次函数的解析式的三种形式 (1)一般式f(x)?ax2?bx?c(a?0); (2)顶点式f(x)?a(x?h)2?k(a?0); (3)零点式f(x)?a(x?x1)(x?x2)(a?0). 7.解连不等式N?f(x)?M常有以下转化形式

N?f(x)?M?[f(x)?M][f(x)?N]?0

M?NM?Nf(x)?N|??0 ?|f(x)??22M?f(x)11?. ?f(x)?NM?N8.方程f(x)?0在(k1,k2)上有且只有一个实根,与f(k1)f(k2)?0不等价,前者是后者的一个必要而不是充

分条件.特别地, 方程ax?bx?c?0(a?0)有且只有一个实根在(k1,k2)内,等价于f(k1)f(k2)?0,或

2f(k1)?0且k1??k?k2k?k2bb?1???k2. ,或f(k2)?0且12a222a29.闭区间上的二次函数的最值

二次函数f(x)?ax?bx?c(a?0)在闭区间?p,q?上的最值只能在x??如下:

b处及区间的两端点处取得,具体2abb??p,q?,则f(x)min?f(?),f(x)max?max?f(p),f(q)?; 2a2ab??p,q?,f(x)max?max?f(p),f(q)?,f(x)min?min?f(p),f(q)?. x??2ab??p,q?,则f(x)min?min?f(p),f(q)?, (2)当a<0时,若x??2ab??p,q?,则f(x)max?max?f(p),f(q)?,f(x)min?min?f(p),f(q)?. x??2a(1)当a>0时,若x??

10.一元二次方程的实根分布

依据:若f(m)f(n)?0,则方程f(x)?0在区间(m,n)内至少有一个实根 . 设f(x)?x2?px?q,则

?p2?4q?0?(1)方程f(x)?0在区间(m,??)内有根的充要条件为f(m)?0或?p;

???m?2

?f(m)?0?f(n)?0??f(m)?0?2(2)方程f(x)?0在区间(m,n)内有根的充要条件为f(m)f(n)?0或?p?4q?0或?或

f(n)?0??p?m???n??2?f(n)?0; ?f(m)?0??p2?4q?0?(3)方程f(x)?0在区间(??,n)内有根的充要条件为f(m)?0或?p .

???m?211.定区间上含参数的二次不等式恒成立的条件依据

(1)在给定区间(??,??)的子区间L(形如??,??,???,??,??,???不同)上含参数的二次不等式

f(x,t)?0(t为参数)恒成立的充要条件是f(x,t)min?0(x?L).

(2)在给定区间(??,??)的子区间上含参数的二次不等式f(x,t)?0(t为参数)恒成立的充要条件是f(x,t)man?0(x?L).

?a?0?a?0?42(3)f(x)?ax?bx?c?0恒成立的充要条件是?b?0或?2.

b?4ac?0?c?0??12.真值表 p q 非p p或q p且q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假 假 13.常见结论的否定形式 原结论 反设词 是 不是 都是 不都是 大于 不大于 小于 不小于 对所有x,成立 存在某x,不成立 对任何x,不成立 存在某x,成立 原结论 至少有一个 至多有一个 至少有n个 至多有n个 p或q 反设词 一个也没有 至少有两个 至多有(n?1)个 至少有(n?1)个 ?p且?q p且q ?p或?q 14.四种命题的相互关系 原命题:与逆命题互逆,与否命题互否,与逆否命题互为逆否; 逆命题:与原命题互逆,与逆否命题互否,与否命题互为逆否; 否命题:与原命题互否,与逆命题互为逆否,与逆否命题互逆; 逆否命题:与逆命题互否,与否命题互逆,与原命题互为逆否;

15.充要条件

(1)充分条件:若p?q,则p是q充分条件.

(2)必要条件:若q?p,则p是q必要条件.

(3)充要条件:若p?q,且q?p,则p是q充要条件.

注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.

§02. 函数

16.函数的单调性

(1)设x1?x2??a,b?,x1?x2那么

(x1?x2)?f(x?f(x0?)??1)2f(x1)?f(x2)?0?f(x)在?a,b?上是增函数;

x1?x2f(x1)?f(x2)?0?f(x)在?a,b?上是减函数.

x1?x2(2)设函数y?f(x)在某个区间内可导,如果f?(x)?0,则f(x)为增函数;如果f?(x)?0,则f(x)为减函

(x1?x2)?f(x1)?f(x2)??0?数.

17.如果函数f(x)和g(x)都是减函数,则在公共定义域内,和函数f(x)?g(x)也是减函数; 如果函数

y?f(u)和u?g(x)在其对应的定义域上都是减函数,则复合函数y?f[g(x)]是增函数.

18.奇偶函数的图象特征

奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.

19.若函数y?f(x)是偶函数,则f(x?a)?f(?x?a);若函数y?f(x?a)是偶函数,则

f(x?a)?f(?x?a).

20.对于函数y?f(x)(x?R),f(x?a)?f(b?x)恒成立,则函数f(x)的对称轴是函数x? 两个函数y?f(x?a)与y?f(b?x) 的图象关于直线x?a?b; 2a?b对称. 221.若f(x)??f(?x?a),则函数y?f(x)的图象关于点(,0)对称; 若f(x)??f(x?a),则函数y?f(x)为周期为2a的周期函数.

22.多项式函数P(x)?anxn?an?1xn?1?a2?a0的奇偶性

多项式函数P(x)是奇函数?P(x)的偶次项(即奇数项)的系数全为零. 多项式函数P(x)是偶函数?P(x)的奇次项(即偶数项)的系数全为零. 23.函数y?f(x)的图象的对称性

(1)函数y?f(x)的图象关于直线x?a对称?f(a?x)?f(a?x)

?f(2a?x)?f(x).

(2)函数y?f(x)的图象关于直线x?a?b对称?f(a?mx)?f(b?mx) 2?f(a?b?mx)?f(mx).

24.两个函数图象的对称性

(1)函数y?f(x)与函数y?f(?x)的图象关于直线x?0(即y轴)对称. (2)函数y?f(mx?a)与函数y?f(b?mx)的图象关于直线x?(3)函数y?f(x)和y?f?1a?b对称. 2m(x)的图象关于直线y=x对称.

25.若将函数y?f(x)的图象右移a、上移b个单位,得到函数y?f(x?a)?b的图象;若将曲线f(x,y)?0的图象右移a、上移b个单位,得到曲线f(x?a,y?b)?0的图象.

26.互为反函数的两个函数的关系

f(a)?b?f?1(b)?a.

27.若函数y?f(kx?b)存在反函数,则其反函数为y?1?1[f(x)?b],并不是y?[f?1(kx?b),而函数ky?[f?1(kx?b)是y?1[f(x)?b]的反函数. k28.几个常见的函数方程

(1)正比例函数f(x)?cx,f(x?y)?f(x)?f(y),f(1)?c.

(2)指数函数f(x)?a,f(x?y)?f(x)f(y),f(1)?a?0.

(3)对数函数f(x)?logax,f(xy)?f(x)?f(y),f(a)?1(a?0,a?1). (4)幂函数f(x)?x,f(xy)?f(x)f(y),f(1)??.

(5)余弦函数f(x)?cosx,正弦函数g(x)?sinx,f(x?y)?f(x)f(y)?g(x)g(y),

?'xf(0)?1,limx?0g(x)?1. x