张老师资料
27、三角形、梯形的第二种推导方法,自己看书两个完全一样的梯形可以拼成一个平行四边形,知道就行。
平行四边形的底相当于梯形的上下底之和; 平行四边形的高相当于梯形的高; 平行四边形面积等于梯形面积的2倍,
因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2 28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;
等底等高的平行四边形面积是三角形面积的2倍。 29、长方形框架拉成平行四边形,周长不变,面积变小。 30、组合图形:转化成已学的简单图形,通过加、减进行计算。
第七单元数学广角
33、【身份证号码蕴含的信息和编码的含义】
1.公民身份证的意义: 公民身份号码是每个公民唯一的、终身不变的身份代码,由公安机关按照公民身份号码国家标准编制的。
2.身份证的作用: 居民身份证是公民进行社会活动,维护社会秩序,保障公民合法权益,证明公民身份的法定证件。它的作用很多,如:(1)选民登记;(2)户口登记;(3)兵役登记;(4)入学、就业;(5)办事公证事务;(6)办理申请出境手续;(7)办理机动车、船驾驶证和行驶证、非机动车执照……
3.身份证号码的分类: 身份证号码有15和18位之分。1985年我国实行居民身份证制度,当时签发的身份证号码是15位的(属于第一代居民身份证),1999年签发的身份证由于年份的扩展(由两位变为四位)和末尾加了校验码,就成了18位(属于第二代居民身份证)。这两种身份证号码将在相当长的一段时期内共存。(备注:第一代居民身份证或将于2013年1月1号停止使用。) 4.身份证号码的组成。
(1)18位身份证号码的组成:
举例: 110102 20050107 151 9
前6位 第7~14位 第15~17位 第18位
前6位:行政区划代码,其中1、2位数为各省级政府的代码,
3、4位数为地、市级政府的代码, 5、6位数为县、区级政府代码。
第7~10位为出生年份,11~12位为出生月份,13~14位为出生日期。 第15~17位为顺序号及性别区分,单数为男性分配码,双数为女性分配码。 第18位校验码(识别码)。
51
张老师资料
(2)15位身份证号码的组成:
①1、2位代表申办身份证时户口所在省分(省公安厅)编号;
②3、4位代表所在地区(市级公安局)编号;
③5、6位代表所在地区的更进一步行政划分(城市中的区,县一级的公安局); ④7、8位代表出生年后两位(1901~2000); ⑤9、10位代表出生月份; ⑥11、12位代表出生日;
⑦13、14、15这后三位代表户口所在派出所被分配到的号码段。
(提示:同一省份的公民身份证的前几位数字都相同) (3)字母表示身份证号的组成:
AABBCC——所属区域编码 YYYY MM DD——出生年月日 AABBCCYYYYMMDDNNNC NNN——地区编号及性别区分
C——校验码
【归纳总结】:
居民身份证的号码是按照国家的标准编制的,由18个数字组成;前6位为行政区划分代码,第7至14位为出生日期码,第15至17位为顺序码,第18位为校验码。
倒数第二位的数字用来表示性别,单数表示男,双数表示女。
五年级下册
第一单元 图形的变换
1、轴对称图形:把一个图形沿着一条直线折叠后,两边的图形可以完全重合,那么这个图形就是轴对称图形,这条直线就是这个图形的对称轴。 2、对称点到对称轴的距离相等。 3、旋转要明确绕点,角度和方向。
4、图形变换的基本方式是平移、对称和旋转。
5、等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。 第二单元 因数和倍数
6、2和6是12的因数。12是2的倍数,也是6的倍数。因数和倍数的描述:谁是谁的因数,谁是谁的倍数。
7、注意:为了方便,在研究因数和倍数时候,我们所说的数指的是整数(一般不包括0) 8、一个数的最小因数是1,最大的因数是它本身。 9、一个数的因数的个数是有限的。
52
张老师资料
10、一个数的最小倍数是它本身,没有最大的倍数。 11、一个数的倍数的个数是无限的。
12、因数<或=它本身、倍数>或 = 它本身、 最大的因数=最小的倍数=它本身 13、个位上是0、2、4、6、8的数是2的倍数。
14、自然数中,是2的倍数的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。不是2的倍数的数叫奇数。也就是个位上是1、3、5、7、9的数。 15、自然数分成偶数和奇数,最小的偶数是0,最小的奇数是1。 16、个位上是0或5的数,是5的倍数。
17、个位上是0的数,既是2的倍数,又是5的倍数。
18、奇数+、- 偶数=奇数 奇数+、- 奇数=偶数 偶数+、-偶数=偶数。 19、一个数各位上的数的和是3的倍数,这个数就是3的倍数。 20、既是2和5的倍数,又是3的倍数的最小三位数是120。 21、同时满足2.3.5的倍数,实际是求2×3×5=30的倍数。
22、一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。
23、一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。(至少3个因数) 24、1既不是质数,也不是合数。 25、最小的质数是2,最小的合数是4 。
26、按因数的个数划分为:自然数分为质数、合数、1和0 。 27、按2的倍数划分:自然数分为偶数、奇数
28、100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。
29、20以内的质数:2、3、5、7、11、13、17、19 。
30、100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、
43、47、53、59、61、67、71、73、79、83、89、97 。 31、每个合数都可以由几个质数相乘得到,质数相乘一定得合数。 第三单元 长方体和正方体
32、长方体是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。在一个长方体中,相对的面完全相同,相对的棱长度相等。
33、长方体有6个面。有12条棱,相对(也可以说是平行)的4条棱的长度相等。长方体有8个顶
点。
53
张老师资料
34、相交于一个顶点的三条棱的长度分别叫做长方体的长`宽`高。 35、长方体的棱长总和:(1)(长+宽+高)×4 (2)长×4+宽×4+高×4 36、(1)正方体的6个面是完全相同的正方形。 (2)正方体的12条棱长度都相等。 (3)有8个顶点。
37、正方体可以看成是长、宽、高都相等的长方体。 38、正方体的棱长总和=棱长×12
39、用棱长1cm的小正方体摆成稍大一些的正方体,至少需要8个小正方体。 40、长方体或正方体6个面的总面积,叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2 41、正方体的表面积=棱长×棱长×6 42、用刀分开物体时,每分一次增加两个面。 43、物体所占空间的大小叫做物体得体积。 44、长方体的体积=长×宽×高 V=a b h
45、 正方体的体积=棱长×棱长×棱长 用字母表示:V=a3 46、 a·a·a·也可以写作“a3”,读作“a的立方”,表示3个a相乘 47、 长方体或正方体底面的面积叫做底面积。
48、 长方体(或正方体)的体积=底面积×高 用字母表示:V=S h
(横截面积相当于底面积,长相当于高)。 49、 1dm3=1000cm3 1m3=1000dm3
50、 一个长方体和一个正方体的棱长总和相等,但体积不一定相等。 51、 箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。
52、 固体一般就用体积单位,计量液体的体积,如水、油等,常用容积单位升和毫升,也可以写
成L和ml。
53、 1L=1 dm3 1ml=1 cm3 1L=1000ml
54、 长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但要从容器里面量长、宽、高。
对于同一个物体,体积大于容积。
55、 形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。
54
张老师资料
56、排水法的公式:V物体 =V现在-V原来 57、也可以 V物体 =S×(h现在- h原来) V物体 = S×h升高
更多免费资源下载绿色圃中小学教育网http://www.lspjy.com 课件|教案|试卷|无需注册
第四单元 分数的意义和性质
58、一个物体、一个计量单位或者一些物体都可以看作一个整体,也就是单位“1”。 59、把单位“1”平均分成若干份,表示这样一份或几份的数叫做分数。 60、把单位“1”平均分成若干份,表示这样一份的数叫做分数单位。 61、分数与除法的关系:
被除数 分子÷分母 (除数不能为0,分母也不能够为0) 被除数÷除数= =)
除数
62、求一个数是另一个数的几分之几用( )计算。求鹅的只数是鸭的几分之几用( )÷( )=鹅的只数是鸭的几分之几。 63、分子比分母小的分数叫做真分数。真分数小于1。
分子比分母大或分子和分母相等的分数叫做假分数。假分数大于1或等于1。 带分数由整数和真分数组成的分数。带分数大于1。 真分数<1≤假分数
64、、当分子一定是分母的倍数时,假分数可以化成整数:用分子除以分母。
1414如:的分子是14,分母是7,14是7的倍数,所以=14÷7=2。
7765、把假分数化成带分数:用分子除以分母,商是带分数的整数部分,余数是分数部分的分子,分母是原来的分母。
14 如:=14÷3=4……2,分子除以分母商是4作带分数的整数部分,余数是2作分数部分的分子,
3142分母是原来的分母3,所以=14÷3=4。
3366、分数的基本性质:分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。这
叫做分数的基本性质。
67、两个数公有的倍数,叫做它们的公倍数。其中最小的公倍数,叫做它们的最小公倍数。两个数
的公倍数是它们的最小公倍数的倍数。
68、⑴两个连续的自然数只有公因数1,它们的最大公因数是1,最小公倍数是这两个数的积。如:
3和4是两个连续的自然数,它们的最大公因数是1,最小公倍数是3×4=12。
⑵两个不同的质数只有公因数1,它们的最大公因数是1,最小公倍数是这两个质数的积。如:
55