2018年七年级上册数学总复习资料 下载本文

七年级上册数学总复习

第一章 有理数

一、 知识要点

本章的主要利用数轴又可以把这些概念串在一起。有理数的运算是全章的重点。在具体运算时内容可以概括为有理数的概念与有理数的运算两部分。有理数的概念可以利用数轴来认识、理解,同时,,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。 基础知识:

1、正数(position number):大于0的数叫做正数。

2、负数(negation number):在正数前面加上负号“-”的数叫做负数。 3、0既不是正数也不是负数。

4、有理数(rational number):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

5、数轴(number axis):通常,用一条直线上的点表示数,这条直线叫做数轴。

数轴满足以下要求:

(1) 在直线上任取一个点表示数0,这个点叫做原点(origin); (2) 通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)

为负方向;

(3) 选取适当的长度为单位长度。

6、相反数(opposite number):绝对值相等,只有负号不同的两个数叫做互为相反数。

7、绝对值(absolute value)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。

由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.

正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。 8、有理数加法法则

1

(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0. (3)一个数同0相加,仍得这个数。

加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。表达式:a+b=b+a。

加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。 表达式:(a+b)+c=a+(b+c) 9、有理数减法法则

减去一个数,等于加这个数的相反数。表达式:a-b=a+(-b) 10、有理数乘法法则

两数相乘,同号得正,异号得负,并把绝对值相乘。 任何数同0相乘,都得0.

乘法交换律:一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。表达式:ab=ba

乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。表达式:(ab)c=a(bc)

乘法分配律:一般地,一个数同两个的和相乘,等于把这个数分别同这两个数相乘,再把积相加。 表达式:a(b+c)=ab+ac 11、倒数

1除以一个数(零除外)的商,叫做这个数的倒数。如果两个数互为倒数,那么这两个数的积等于1。

12、有理数除法法则:两数相除,同号得负,异号得正,并把绝对值相除。0除以任何一个不等于0的数,都得0.

13、有理数的乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂(power)。an中,a叫做底数(base number),n叫做指数(exponent)。 根据有理数的乘法法则可以得出:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。

2

14、有理数的混合运算顺序

(1)“先乘方,再乘除,最后加减”的顺序进行; (2)同级运算,从左到右进行;

(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。 15、科学技术法:把一个大于10的数表示成a﹡10n的形式(其中a是整数数位只有一位的数(即0

17、有理数可以写成m/n(m、n是整数,n≠0)的形式。另一方面,形如m/n(m、n是整数,n≠0)的数都是有理数。所以有理数可以用m/n(m、n是整数,n≠0)表示。

第二章 整式的加减总复习

【知识点定义】 1、单项式

对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式.单独一个数或一个字母也是单项式. 2、系数

单项式中的数字因数叫做这个单项式的系数.

3、单项式的次数

一个单项式中,所有字母的指数的和叫做这个单项式的次数.

4、多项式

几个单项式的和叫做多项式. 5、多项式的项

在多项式中,每个单项式叫做多项式的项.

-6是常数项.

6、常数项

多项式中,不含字母的项叫做常数项. 7、多项式的次数

多项式里,次数最高的项的次数,就是这个多项式的次数.

3