浅谈数学建模与研究性学习的关系 下载本文

浅谈数学建模与研究性学习的关系

随着经济的全球化,社会知识结构不断的变革。这就要求各行各业人才必须有创新的精神,以适应这个讯息万变的世界。然而创新精神的培养必须打破传统的教育的理念和形式。于是培养学生的创新精神和实践能力为重点,满足个人发展和社会进步的需要为目标的素质教育改革大潮汹涌而来。其中研究性学习就是这次改革的一大亮点。这种学习方式对全面提过学生的科学素养,培养其创新精神,实践能力和合作意识有巨大的作用。

数学研究性学习就是学生研究性学习的一个有机的组成部分,《普通高中数学课程标准》指出:高中数学课程设立数学探究活动,为学生形成积极主动的,多样的学习方式进一步创造有力的条件,以激发学生的数学学习兴趣,鼓励学生在学习过程中,养成独立思考,积极探索的习惯。使得数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而在应用数学分析和解决实际问题能力方面得到训练和提高。 这种能力的训练要依赖有效的教学形式。笔者认为数学建模就是其中一个有效的形式。数学建模是数学知识和数学应用的桥梁。学生提出一个提出问题并明确探索方向,能够

用已有的知识体系去交流,并将实践问题抽象为数学问题建立数学模型,从而形成解决实际问题。研究和学习数学建模能够帮组学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新和实践能力,这与研究性学习目的完全相同。本文谈谈就是数学建模和研究性学习的“关系”. 一、建模中的几何模型与研究性学习关系

几何是以空间形式及其数量关系是数学研究的主要对象,在生产,生活实际中有大量的几何问题有待我们去解决。这就为研究建模提供了大量的素材。其中的建模的过程就是一个研究性的学习过程。首先要对空间综的物体“处理”分割成不规则或者规则的几何体组合。接着对生活的资料进行简化和假设,把它们“理想化”比如河床宽窄不一,理想为规则的形状。最后应用平面几何,立体几何,解析几何的数学知识去解决问题。但是收集来的数据充其量是一些“实际的素材”但要上升为“实际问题”还要经过一次“飞跃”。这就需要去研究,去琢磨。与研究性学习的理念完全相同。高中阶段建模几何中通常所遇到的得有三大类问题:设计与制作材料最省问题(设计试衣镜既能使得试衣者全面看到自己的形象,有要设计美观新颖并节省材料);计量中的体积,直径,长度问题;线路和方位中的距离最短问题;交通和航道的最优路线等问题。这些几何的例子学生可以根据自己的理解构造出具体的数学问题,然后尝试求解形成的数学问题

并完成解答,体会学习数学的成功感,这样有利于培养学生的逻辑思维及逻辑推理能力,那么数学研究性学习一个有重要意义也就达到了。

二、建模中的数列模型与研究性学习的关系

高中阶段数列中的重头戏是等差,等比数列,而在建模中的重头戏就是通过建立的累加的数列模型利用这两个数列求和公式进行解答。但是往往实际问题中所涉及的面很广,并且所涉及到的具体问题的假设项目繁多,比如一个时期的人口数量,要忽略死亡的人数,出生的人数,迁出迁入的人数,取其某个时期内的平均数人数等。对于这类题要抓住反应事物的本质,把大量的实际数学素材转化为一个数列问题。在收集大量的材料,数据时,可以通过查阅报表,统计材料等。在这个过程中研究性学习的实践能力就能很好的培养,根据自己所研究的问题,寻找相应的数据,解决所要建立模型的数学问题。这个在研究性学习中属于是组织课题,并制定研究的计划和方向过程。这类题目能够培养学生收集资料,分析资料的良好习惯,提出问题,解决问题并得出科学结论的研究能力,人际交往及协作能力,渗透研究性学习的思路。培养了科学探索的精神和不怕苦的科研精神。利用书本上的知识,扩展到生活的实际问题如现在银行推出存钱付学费这个活动。学生可以去收集资料,然后建立模型,分析这个贷款最后数额是否比银行每学期所支付的费用多