概率论与数理统计浙大四版习题精选答案(完全真实) 下载本文

概率论与数理统计习题答案 精选版

浙大第四版

说明:剩余习题在学习辅导与习题选解

第一章 概率论的基本概念

1. 写出下列随机试验的样本空间

(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1)

o1n?100?S???,???,n表小班人数

n??nn(3)生产产品直到得到10件正品,记录生产产品的总件数。([一] 2)

S={10,11,12,………,n,………}

(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。

查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。

([一] (3))

S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,}

2. 设A,B,C为三事件,用A,B,C的运算关系表示下列事件。

(1)A发生,B与C不发生。 表示为:

ABC或A- (AB+AC)或A- (B∪C)

(2)A,B都发生,而C不发生。 表示为:

ABC或AB-ABC或AB-C

表示为:A+B+C

(3)A,B,C中至少有一个发生 (4)A,B,C都发生, (5)A,B,C都不发生,

表示为:ABC 表示为:ABC或S- (A+B+C)或A?B?C

(6)A,B,C中不多于一个发生,即A,B,C中至少有两个同时不发生 相当于AB,BC,AC中至少有一个发生。故 表示为:AB?BC?AC。 (7)A,B,C中不多于二个发生。

相当于:A,B,C中至少有一个发生。故 表示为:A?B?C或ABC

(8)A,B,C中至少有二个发生。

相当于:AB,BC,AC中至少有一个发生。故 表示为:AB+BC+AC

6. 在房间里有10人。分别佩代着从1号到10号的纪念章,任意选3人记录其纪念章的号码。 (1)求最小的号码为5的概率。

记“三人纪念章的最小号码为5”为事件A

10?∵ 10人中任选3人为一组:选法有??3?种,且每种选法等可能。 ??5?又事件A相当于:有一人号码为5,其余2人号码大于5。这种组合的种数有1???2? ??∴

5?1???2????1 P(A)?12?10??3???(2)求最大的号码为5的概率。

10?记“三人中最大的号码为5”为事件B,同上10人中任选3人,选法有??3?种,且每种选法等可能,又事??4?件B相当于:有一人号码为5,其余2人号码小于5,选法有1???2?种 ??7. 某油漆公司发出17桶油漆,其中白漆10桶、黑漆4桶,红漆3桶。在搬运中所标笺脱落,交货人随意将这些标笺重新贴,问一个定货4桶白漆,3桶黑漆和2桶红漆顾客,按所定的颜色如数得到定货的概率是多少?

记所求事件为A。

9在17桶中任取9桶的取法有C17种,且每种取法等可能。

432?C4?C3取得4白3黑2红的取法有C10

432C10?C4?C3252P(A)?? 62431C178. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1)求恰有90个次品的概率。 记“恰有90个次品”为事件A

1500?∵ 在1500个产品中任取200个,取法有??200?种,每种取法等可能。

??400??1100?200个产品恰有90个次品,取法有??90??110?种

????∴

?400??1100??90??110????

P(A)???1500??200???(2)至少有2个次品的概率。 记:A表“至少有2个次品”

1100?B0表“不含有次品”,B1表“只含有一个次品”,同上,200个产品不含次品,取法有??200?种,200个产

??400??1100?品含一个次品,取法有??1??199?种

????∵ A?B0?B1且B0,B1互不相容。

??1100??400??1100???1??199????200??????

P(A)?1?P(A)?1?[P(B0)?P(B1)]?1?????15001500????????200??200????????9. 从5双不同鞋子中任取4只,4只鞋子中至少有2只配成一双的概率是多少? 记A表“4只全中至少有两支配成一对” 则A表“4只人不配对”

10?∵ 从10只中任取4只,取法有??4?种,每种取法等可能。

??5?4要4只都不配对,可在5双中任取4双,再在4双中的每一双里任取一只。取法有??4??2

??11. 将三个球随机地放入4个杯子中去,问杯子中球的最大个数分别是1,2,3,的概率各为多少? 记Ai表“杯中球的最大个数为i个” i=1,2,3, 三只球放入四只杯中,放法有43种,每种放法等可能

对A1:必须三球放入三杯中,每杯只放一球。放法4×3×2种。 (选排列:好比3个球在4个位置做排列)

2?4?3种。 对A2:必须三球放入两杯,一杯装一球,一杯装两球。放法有C32(从3个球中选2个球,选法有C3,再将此两个球放入一个杯中,选法有4种,最后将剩余的1球

放入其余的一个杯中,选法有3种。

对A3:必须三球都放入一杯中。放法有4种。(只需从4个杯中选1个杯子,放入此3个球,选法有4种) 12. 50个铆钉随机地取来用在10个部件,其中有三个铆钉强度太弱,每个部件用3只铆钉,若将三只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱,问发生一个部件强度太弱的概率是多少?