模拟通信中调频系统的抗噪声性能分析讲诉 下载本文

模拟通信系统的抗噪声性能分析

模拟通信中调频系统的抗噪声性能分析

作者姓名: 指导老师:

摘要:在通信系统中调制扮演着不可或缺的作用,通过调制可以把基带信号频率搬移到合适的频率上,从而达到提高发射效率的作用,也可以通过调制把多个基带信号分别搬移到不同的载频处,提高信道利用率。还有扩展信号带宽提高抗干扰能力等。本文主要通过对模拟通信中正弦波的频率调制(即频率调制FM)过程进行分析,并通过计算在大信噪比下的解调器制度增益然后与调幅系统的作比较来分析调频系统的抗噪声性能(因为相干解调只适用于窄带调频所以暂不分析)。还有小信噪比下的门限效应以及通过预加重和去加重技术来提高调频系统的抗噪声性能。最后运用MATLAB软件对模拟通信中调频系统进行仿真设计,并分析和总结仿真结果。

关键字:模拟通信;调频系统; 解调器;门限效应;制度增益;仿真设计。

引言

进入21世纪以来,随着国民经济的飞速提升,中国通信行业也得到了快速发展,对通信的技术要求也逐渐提高。从模拟通信到数字通信,从无线电广播到卫星,光纤通信等等。而频率调制在通信发展的进程上都占据着重要的作用,比如FM广泛应用于高保真音乐广播,电视伴音信号的传输,卫星通信和蜂窝电话系统。频率调制(FM)在电子音乐合成技术中,是最有效的合成技术之一,还有有线频率在多领域应用。研究模拟通信中调频系统的抗噪声性能能够从理论上认识调频系统的噪声来源和如何改善系统的抗噪声性能。

第一章:调频系统的简介

1.1 模拟通信和调频系统的概述

在实际的通信中,由于通信业务的多样性,消息的来源也是多种多样的,但基本可以分为两大类:连续的和离散的。连续的消息如话音,声波振动的幅度也是随时间连续变化的。若把它转换为随时间连续变化的电压信号,信号幅度也是时间连续函数。这样的信号称作模拟信号,传输模拟信号的通信就称作模拟通信。

调频定义:幅度不变,载波信号的频率随调试信号幅度变化位变化的调制方式叫着调频。

就是载频的频率不是一个常数,是随调制信号而在一定范围内变化,其幅值则是一个常数。与其对应的,调幅就是载频的频率是不变的,其幅值随调制信号而变。已调波频率变化的大小由调制信号的大小决定,变化的周期由调制信号的频率决定。已调波的振幅保持不变。调频波的波形,就像是个被压缩得不均匀的弹簧,调频波用英文字母FM表示。

一般干扰信号总是叠加在信号上,改变其幅值。所以调频波虽然受到干扰后幅度上也会有变化,但在接收端可以用限幅器将信号幅度上的变化削去,所以调频波的抗干扰性极好,用收音机接收调频广播,基本上听不到杂音。

其次频率调制又称作非线性调制,因为已调信号频谱不再是原调制信号的线性搬移,而是频谱的非线性变换,会产生与频谱搬移不同的新的频率成分。故又称作非线性调制。与幅度调制相比,频率调制

第 1 页 共 1 页

模拟通信系统的抗噪声性能分析

最突出的优势是其较高的抗噪声性能,但是付出了更宽的带宽代价。

1.2调频技术的发展历史

上世纪初,美国科学界出现了一股发明热,继爱迪生发明了电灯和留声机、福雷斯特发明了三极管、贝尔发明了电话之后,阿姆斯特朗也加入了伟大的发明行列。他一口气发明了负反馈、再生、超再生、超外差电路,奠定了现代无线电接收机的基础。1933年他又发明了宽带调频,并建造起50千瓦的私人试验电台。1935年4月,他在纽约帝国大厦同时发射调频信号和调幅信号,在新泽西州哈顿菲尔德自己的实验室里作接收对比。结果表明,调幅信号已被噪声淹没,而调频信号却仍然十分清晰。美国对调频技术非常重视。1941年元旦,25家调频电台在美国各地同时开业,开创了世界上最早的调频广播。1958年,美国工程师赖纳德·康研制出立体声广播系统,1960年,蒙特利尔广播站首次应用赖纳德·康的系统进行立体声FM广播。60年代中期调频立体声得到飞速的发展。从70年代后期开始,有些国家开始研究四声道全景环绕声广播,但由于接收条件要求苛刻,昙花一现宣告失败。我国的调频广播是1959年元旦在北京开始试播的,频段是64.5~73MHz,我国的调频立体声广播是1979年在哈尔滨开始的,80年代中期调频广播在全国普及。从此,中国人迎来了不受天电噪声干扰,且具有高保真度的无线电广播新时代。

在调幅长波、中波、短波、短波单边带、调频这些模拟广播制式中,调频是唯一能提供高传真广播的媒介,广播内容以音乐为主,被誉为欢乐调频。调频不但给我们的生活带来快乐,在广播文化、技术探秘、音质评价、器材收藏方面也充满魅力。

1.3 频率调制的应用领域

历史上首先注意这种现象的是17世纪的惠更斯,偶然因素使他发现家中挂同一木板墙壁上的两个挂钟因为相互影响而同步的现象,在现在的电子示波器中,人们利用这一原理将波形锁定在屏幕上。频率调制是一种以载波的瞬时频率变化来表示信息的调制方式,通过利用载波的不同频率来表达不同的信息。现代先进雷达已经能通过这种技术来减少杂波,抑或通过将一个集中的雷达脉冲波束散射,达到不被发现的功能,成为低截获概率技术(电子侦察系统会查找狭小波段范围内的电磁波,如果不这样,将会被无穷的背景电磁辐射扰乱)

另外频率调制(FM)在电子音乐合成技术中,是最有效的合成技术之一,它最早由美国斯坦福大学约翰.卓宁(JohnChowning)博士提出。20世纪60年代,卓宁在斯坦福大学开始尝试使用不同类型的颤音,他发现当调制信号的频率增加并超过某个点的时候,颤音效果就在调制过的声音里消失了,取而代之的是一个新的更复杂的声音。

卓宁当时只是在完成无线电广播发射中最常用的调频技术(也就是FM广播)。但卓宁的偶然发现,却使这种传统的调频技术在声音合成方面有了新的用武之地。当卓宁领悟了FM调制的基本原理后,他立即开始着手研究FM理论合成技术,并在1966年成为使用FM技术制作音乐的第一人。

第二章:调频信号的调制与解调

2.1 调频信号的概念

角度调制信号的一般表达式为

?Acos[?ct??(t)] Sm(t)(2.1.1)

频率调制(FM),就是指瞬时频率偏移随调制信号m(t)成比例变化,也就是

第 2 页 共 2 页

模拟通信系统的抗噪声性能分析

d?(t)??fm(t)(2.1.2)dt

式中:Kf为调频灵敏度(rad/(s·V))。所以相位偏移为:

??f?m(?)d? (2.1.3) ?(t)因此调频信号为:

SFM?Acos[?ct?Kf?m(?)d?] (2.1.4)

由此可见FM是相位偏移m(t)的积分呈线性变化,一般情况研究模拟通信中调频系统的模型都是单音调制FM,因为这可以简化公式且不影响变化结果。 设调制信号是单一频率的正弦波:

?Amcos?mt?Amcos2?fmt (2.1.5) m(t)当对它载波进行频率调制时可得FM信号:

?Acos[?ct?kfAm?cos?m?d?]?ACOS[?Ct?mfsin?mt] (2.1.6) SFM(t) 下面也简单介绍下相位调制,因为相位和频率之间存在积分与微分的关系。相位调制是指瞬时相位偏移随调制信号m(t)作线性变化, 即:

因此调相信号可表示为:

?(t)??pm(t) (2.1.7)

SPM(t)?Acos[?ct??pm(t)] (2.1.8)

所以从公式可以看出FM和PM之间是可以相互转换,FM可以通过间接调频和直接调频方式获得。如

图2-1所示:

m(t) FM SFM(t)m(t)积分器 PM 调制器 SFM(t) 调制器 直接调频 间接调频 图 2-1 调频信号的产生方式 2.2 窄带调频

如果FM信号的最大信号瞬相位偏移符合:

kf?m(?)d???6(或者0.5) ( 2.2.1) 则FM信号的频谱宽度比较窄,所以被称作窄带调频(NBFM)。从2.1.4式可知FM信号的一般表达式:

第 3 页 共 3 页