Fabrication of nanoporous-componsition with high catalysis and
SERS activity for in-situ catalytic process study
Abstract
Due to its advantages and broad development prospect in many fields such as catalysis,sensor,electronic and photoelectron, precious metal has been given widespread research.Thus they become a trivial work of synthesis for precious metal nanoporous film and research for catalytic mechanism.
In this experiment, the Au@Pt and Ag@Pd nanoporous film with high purity and uniformity are built successfully. Then, we use SERS to research the relationship between catalytic activity and microstructure.
Besides providing a strong electromagnetic field for Raman signal enhancing,the underlined Au or Ag NWs notably enhanced the catalytic activity of Pt or Pd. In other words, the nanoporous film has both strong Raman signal and high catalytic activity. Thus it can work as platform for catalyzed and the study of KBH4 reduction of PNTP. When using Raman to monitor the reaction, we not only get the data demonstrating the relationship between the structure and activity of catalysts, but also attribute the detected DMAB to the photo-related process, rather than considering it as an intermediate in KBH4 reduction of PNTP.That is to say, this reaction is first-order reaction of kinetics.
According to the data,we get the conclusion that light intensity have different influence on the catalytic activity of Au@Pt and Ag@Pd nanoporous.In addition,we have give a theoretical account about the phenomena.
Key Words: Compound nanoporous film;Surface Enhanced Raman Spectroscopy(SERS); Reaction process; In-situ
5
6
目 录
声 明 .................................................................. 1 摘 要 ................................................................... 3 Abstract ................................................................. 5 目 录................................................................... 7 图目录 ................................................................... 8 表目录 ................................................................... 8 注释说明清单 ............................................................. 8 引 言 ................................................................... 9 1.文献综述 .............................................................. 11
1.1 SERS在化学反应监控中的应用 ..................................... 11 1.2 如何构建催化—表面增强拉曼双活性的SERS基底 .................... 12
1.2.1 SERS的应用强烈地依赖于其基底的性能 ....................... 12 1.2.2 如何构建优良的SERS基底 .................................. 12 1.3 总结与展望 ...................................................... 13 2.实验部分 .............................................................. 15
2.1试剂与仪器 ...................................................... 15 2.2 Au@Pt、Ag@Pd纳孔膜的制备并以其为基底原位监测反应 ................ 15
2.2.1 Au@Pt、Ag@Pd纳孔膜的制备 ................................. 15 2.2.2 KBH4还原p-NTP反应的原位监控 .............................. 16
3.结果与讨论 ............................................................ 17
3.1 Au@Pt纳孔膜的表征 .............................................. 17
3.1.1 Au@Pt纳米线 HAADF-STEM-EDS mapping ....................... 17 3.1.2 Au、Au@Pt纳米线X射线电子能谱(EDS) .................... 17 3.1.3 Au@Pt纳孔膜FESEM ......................................... 18 3.1.4 2,6-DMPI 覆盖在Au、Au@Pt 纳孔膜上的拉曼光谱 .............. 18 3.2 Ag@Pd纳孔膜的表征: ............................................ 19
3.2.1 Ag@Pd纳孔膜FESEM ......................................... 19 3.2.2 Ag@Pd纳孔膜TEM下的莫尔条纹 .............................. 19 3.2.3 2,6-DMPI 覆盖在Ag@Pd 纳孔膜上的拉曼光谱 .................. 20 3.3 Au@Pt、Ag@Pd纳孔膜的催化活性原位拉曼研究........................ 21
3.3.1 KBH4还原附着在Au@Pt纳孔膜上的PNTP反应机理研究 ........... 21 3.3.2 KBH4还原附着在Ag@Pd纳孔膜上的PNTP反应机理研究 ........... 22 3.3.3 Au@Pt 膜上,功率对反应速率常数的影响 ...................... 23 3.3.4 Ag@Pd 膜上,KBH4、激发激光波长、功率密度对反应速率常数的影响24
4.结论与展望 ............................................................ 25 参考文献 ................................................................ 26 在学取得成果 ............................................................ 29 致 谢 .................................................................. 31
7
图目录
图1 拉曼监控反应实验装置图........................................16 图2 Au@Pt纳米线 HAADF-STEM-EDS mapping............................17 图3 Au纳米线和Au@Pt纳米线X射线电子能谱(EDS)...................17 图4 Au@Pt纳孔膜FESEM微观图.......................................17 图5 Au@Pt纳孔膜FESEM宏观图.......................................18 图6 2,6-DMPI覆盖在Au、Au@Pt纳孔膜上的拉曼光谱(波长785nm 激光)..18 图7 Ag@Pd纳孔膜FESEM微观图(a)..................................18 图8 Ag@Pd纳孔膜FESEM微观图(b)..................................19 图9 Ag@Pd TEM.莫尔条纹................................ ............19 图10 2,6-DMPI覆盖在Ag@Pd 纳孔膜上的拉曼光谱(波长785nm 激光)....20 图11 KBH4还原附着在Au@Pt纳孔膜上的PNTP时的3D SERS mapping.......20 图12 KBH4还原附着在Ag@Pd纳孔膜上PNTP的3D SERS mapping...........21 图13 功率对KBH4在Au@Pt纳孔膜上还原PNTP的影响....................22 图14 KBH4在Ag@Pd纳孔膜上还原PNTP的动力学数据.....................23
表目录
表1 试剂与仪器...................................................15 表2 功率对KBH4在Au@Pt纳孔膜上还原PNTP速率常数的影响 ............23
注释说明清单
SERS PNTP PATP DMAB FESEM EDS 2,6-DMPI TEM Surface Enhanced Raman Spectroscopy p-Nitrothiophenol p-Aminothiophenol 4,4’-dimercaptoazobenzene Field Emission Scanning Electron Microscopy Energy Dispersive Spectrometer 2,6-dimethylphenylisocyanide Transmission Electron Microscopy
8