苏教版七年级数学下册知识点(详细全面精华) 下载本文

求出另外一个未知数的值。

2.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。 方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。 3、三元一次方程组的解法

三元一次方程组:方程组含有三个未知数,每个方程中含有未知数的项的次数都是1,并且一共有三个方程组,像这样的方程组叫做三元一次方程组。

解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。 8.3 实际问题与二元一次方程组 实际应用:审题→设未知数→列方程组→解方程组→检验→作答。 关键:找等量关系 常见的类型有:分配问题、追及问题、顺流逆流、药物配制、行程问题 顺流逆流公式: v顺?v静?v水 v逆?v静?v水

第十一章 一元一次不等式

一、不等式及其解集

1.不等式:用不等号表示不等关系的式子叫不等式,不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。

2.不等式的解:使不等式成立的未知数的值,叫不等式的解。

3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。 二、不等式的性质:

性质1:如果a>b,b>c,那么a>c(不等式的传递性).

性质2:不等式的两边同加(减)同一个数(或式子),不等号的方向不变。如果a>b,那么a+c>b+c(不等式的可加性).

性质3: 不等式的两边同乘(除以)同一个正数,不等号的方向不变。不等式

13

的两边同乘(除以)同一个负数,不等号的方向改变。

如果a>b,c>0,那么ac>bc;如果a>b,c<0,acb,c>d,那么a+c>b+d. (不等式的加法法则) 性质5:如果a>b>0,c>d>0,那么ac>bd. (可乘性)

性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.当0

1.一元一次不等式:含有一个未知数,未知数的次数是1的不等式。 2. 不等式的解法: 步骤::①去分母;②去括号;③移项;④合并同类项; ⑤系数化为1 。这与解一元一次方程类似,在解时要根据一元一次不等式的具体情况灵活选择步骤。 注意:去分母与系数化为一要特别小心,因为要在不等式两端同时乘或除以某一个数,要考虑不等号的方向是否发生改变的问题。

1.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

2.不等式组的解:几个不等式的解集的公共部分,叫做由它们组成的不等式组的解集。解不等式组就是求它的解集。

3.解不等式组:先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式的解集。

解一元一次不等式组的一般步骤:①求出这个不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,得到这个不等式组的解集。如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 )。求出各个不等式的解集后,确定不等式组的解的口诀:大大取大,小小取小,大小小大取中间,大大小小无处找。 以两条不等式组成的不等式组为例,

①若两个未知数的解集在数轴上表示同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同小取小”

②若两个未知数的解集在数轴上表示同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同大取大”

③若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集。若x表示不等式的解集,此时一般表示为a<x<b,或a≤x≤b。此乃“相交取中

④若两个未知数的解集在数轴上向背,那么不等式组的解集就是空集,不等式组无解。此乃“向背取空”

不等式组的解集的确定方法(a>b): 不等式组

在数轴上表示的解集 解 集 口 诀 14

x xx x b a b a x>a 同大取大; x<b 同小取小; xb<x<a 相交取中; a b x x空集 向背取空。 a b x

第十二章 证明

命题、定理、证明

1.命题的概念:判断一件事情的语句,叫做命题。 2.命题的组成:每个命题都是题设、结论两部分组成。

题设是已知事项;结论是由已知事项推出的事项。命题常写成“如果??,那么??”的形式。具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。

3.真命题:正确的命题,题设成立,结论一定成立。

4.假命题:错误的命题,题设成立,不能保证结论一定成立。(用反证法,举反例说明一个命题是反命题)

5.定理:经过推理证实得到的真命题。(定理可以做为继续推理的依据) 6.证明:推理的过程叫做证明。

15