实验名称:牛顿环测量曲率半径实验
1.实验目的:
1 观察等厚干涉现象,理解等厚干涉的原理和特点 2 学习用牛顿环测定透镜曲率半径
3 正确使用读数显微镜,学习用逐差法处理数据
2.实验仪器:
读数显微镜,钠光灯,牛顿环,入射光调节架
3.实验原理
图1
如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差
等于膜厚度e的两倍,即
此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差? ,与之对应的光程差为?/2 ,所以相干的两条光线还具有?/2的附加光程差,总的光程差为
(1)
当?满足条件
(2)
时,发生相长干涉,出现第K级亮纹,而当
(3)
时,发生相消干涉,出现第k级暗纹。因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。
如图所示,设第k级条纹的半径为
,对应的膜厚度为 (4)
,则
在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R >> ek,
ek2相对于2Rek是一个小量,可以忽略,所以上式可以简化为
(5)
如果rk是第k级暗条纹的半径,由式(1)和(3)可得
(6)
代入式(5)得透镜曲率半径的计算公式
对给定的装置,R为常数,暗纹半径
(7)
(8)
和级数k的平方根成正比,即随着k的增大,条纹越来越细。
同理,如果rk是第k级明纹,则由式(1)和(2)得
代入式(5),可以算出
(9)
(10)
由式(8)和(10)可见,只要测出暗纹半径(或明纹半径),数出对应的级数k,即可算出R。
在实验中,暗纹位置更容易确定,所以我们选用式(8)来进行计算。 在实际问题中,由于玻璃的弹性形变及接触处不干净等因素,透镜和玻璃板之间不可能是一个理想的点接触。这样一来,干涉环的圆心就很难确定,rk就很难测准,而且在接触处,到底包含了几级条纹也难以知道,这样级数k也无法确定,所以公式(8)不能直接用于实验测量。
在实验中,我们选择两个离中心较远的暗环,假定他们的级数为m和n,测出它们的直径dm = 2rm,dn = 2rn,则由式(8)有
由此得出
(11)
从这个公式可以看出,只要我们准确地测出某两条暗纹的直径,准确地数出级数m和n之差(m-n)(不必确定圆心也不必确定具体级数m和n),即可求得曲率半径R。
4.实验内容
1. 观察牛顿环
将牛顿环放置在读数显微镜镜筒和入射光调节架下方,调节玻璃片的角度,使通过显微镜目镜观察时视场最亮。
调节目镜,看清目镜视场的十字叉丝后,使显微镜镜筒下降到接近牛顿环仪然后缓慢上升,直到观察到干涉条纹,再微调玻璃片角度和显微镜,使条纹清晰。
2. 测牛顿环半径
使显微镜十字叉丝交点和牛顿环中心重合,并使水平方向的叉丝和标尺平行(与显微镜移动方向平行)。记录标尺读数。
转动显微镜微调鼓轮,使显微镜沿一个方向移动,同时数出十字叉丝竖丝移过的暗环数,直到竖丝与第N环相切为止(N根据实验要求决定)。记录标尺读数。
3. 重复步骤2测得一组牛顿环半径值,利用逐差法处理得到的数据,得到牛顿环半径R
和R的标准差
5.数据处理及结果:
6.实验小结
结论:所用牛顿环半径为1.605m,标准差为94.59mm。 误差分析:主要来源于读数时产生的误差。
在仿真实验中,鼠标点击旋钮时,每次的转动幅度较大,叉丝无法准确地与条纹相切,所以记录数据不准确。
建议:对该仿真实验系统进行完善,使得调节旋钮能连续进行,更接近实际,使仿真实验更有实际意义。
7.思考题
1.牛顿环产生的干涉属于薄膜干涉,在牛顿环中薄膜在什么位置?
答:牛顿环的薄膜是介于牛顿环下表面(凸面)与下面的平面玻璃之间的一层空气薄膜。