奥贝尔氧化沟的特性分析与理论探讨
摘要:本文主要是进行了奥贝尔氧化沟的特性分析与理论探讨。 关键词:奥贝尔氧化沟 特性分析 理论探讨
1、1 背景 由于氧化沟工艺运行管理简单易行,运行效果相对稳定,更适合我国的一些中小城镇,而奥贝尔氧化沟道优良的脱氮效果以及溶解氧的分布形式,因其不同于传统的氧段 好氧段的活性污泥脱氮系统,而逐渐成为业内人士关注的焦点。 为什么奥贝尔氧化沟的外沟道会有如此良好的脱氮效果?究竟是由于低氧条件下同时存在的硝化、反硝化,还是由于外沟道中交替出现的好氧、缺氧环境,抑或由于极高的混合液回流比及其他原因?对此,人们提出了3种可能的机理: ●宏观混合方式造成的缺氧好氧环境:即在高浓度有机物中,微生物对食物的快速好氧降解导致高氧条件下的缺氧环境的形成。这就是宏观上的“同时硝化反硝化”,它既可以在推流式曝气池,即在与奥贝尔外沟道相似的缺氧、好氧区中实现,又可以在完全混合式的曝气池中实现(即低溶解氧条件下的“同时硝化反硝化”)。 ●微环境的缺氧与好氧:就每一个微小的活性污泥絮体而言,其外围暴露在好氧条件下,而其内部则处于缺氧条件下。 ●新型特种微生物:即存在一种我们以前并未认识到的全新微生物能够在特定条件下去除营养物。 正是在这种背景下,本文根据IAWQ提出的活性污泥数学模型的原理,通过数学模拟的方法试图对此进行合理的解释。 1.2几个令人困惑的问题与研究的目的 在此背景下,几个相关的问题随之而生。 ●奥贝尔氧化沟外沟道的脱氮作用毋庸置疑,但其影响因素究竟是哪些?能否推而广之,在单沟式氧化沟中采用与奥贝尔氧化外沟道相同的布置,实现优势工艺的改良与变种? ●外沟道的脱氮和碳氧化功能占总量的百分比是多少?外沟、中沟、内沟的溶解氧的分布方式的不同又会有哪些影响?与此相关的二沉池的设计又要注意哪些问题? ●更深入一些,在奥贝尔氧化沟外沟道内,点源与面源曝气的区别及各自的优势是什么?正是这些疑问构成了本文研究的目的。 1.3 研究工具与方法 这些问题的产生很可能是各种生物、物理、化学因素交差、协同作用的综合结果,由于检测手段的限制,无法完全通过试验检测的方法进行令人信服的解释。目前由国际水质协会推出的活性污泥数学模型以微生物反应动力学为基础,综合考虑了各种可能的活性污泥工艺的影响因素,因而可在一定条件下,在时间和空间范围内模拟污水处理厂的真实运行情况。本文拟采用数学模拟与试验测试相结合的方法,根据低负荷长泥龄运行和高负荷短泥龄运行两种条件,对由奥贝尔氧化沟产生并延伸出的上述问题进行解释。 数学模拟以北京燕山石化公司牛口峪污水处理厂的工程测试数据为依据,以活性污泥1号模型为基础,采用ASIM计算机程序上机计算。
2.牛口峪污水处理厂工程测试简介 2.1 工艺设计参数 牛口峪污水处理厂是北京燕山石化公司30万吨乙烯改扩建工程的配套环保项目,主要处理化工一厂的工业废水、化工二厂、化工三厂的部分工业废水及少量生活污水。该厂采用二级生物处理工艺,生物处理工段为奥贝尔氧化沟,设计规模为60000m3/d,1994年12月投产。生物处理工段设计为平行的两组,每组包括1个奥贝尔氧化沟和2个二沉池。单个氧化沟的主要设计参数如下: 设计进水流量 1250m3/h 泥龄 35d 有效池容 1733m3 MLSS 4000mg/L MLVSS 3200mg/L 容积分配 外:中:内=56:26:18 溶解氧分布 外-中-
内=0-1-2mg/L 每个氧化沟设32组曝气转碟,外、中、内沟各安装8组曝气器,氧化沟平面布置如图2.1.1所示。
2.2 测试期间的进出水水质与工艺运行参数 测试期间氧化沟的进出水水质如下表:
表2.2.1测试期间氧化沟原水水质 CODmg/L BOD mg/L SSmg/L TKNmg/L NH4-Nmg/L NOX-Nmg/L TNmg/L PH
进水 396 197 31 16.1 11.6 1.6 17.44 8.0 外沟 37 5 - 1.89 未检出 0.72 1.96 - 中沟 24 4 - 1.09 未检出 0.61 1.26 - 内沟 24 3 - 0.95 未检出 0.6 1.18 - 出水 28 3 13 0.98 未检出 1.39 1.43 8.0
去除率 93% - - 94% - - 92% - “-”在文章表格中表示未检测或未计算。 实际运行参数见下表: 氧化沟运行参数 平均值 范围 进水流量 903 851~937 水力停留时间(h) 19 18~21 水温 15 13~16
转碟运行组数 外沟 5 -
中沟、内沟 3 -
污泥回流比(%) 61 59 ~65 MLSS( mg/L) 3037 2923~3245 MLVSS/MLSS 0.78 - DO(mg/L)
外沟 0 0 ~0.3 中沟 0.4 0.1~0.9
内沟 3.5 2.9~3.9 实际供氧量为: 外沟:中沟:内沟=58:23:19。 3、低负荷长泥龄下的数学模拟 3.1 概述 ●与奥贝尔氧化沟工艺相关的数学模拟从以下几个方面进行: ●奥贝尔氧化沟原型工艺模拟??确定模拟参数的可用性; ●混合液回流比的作用??考察奥贝尔氧化沟外沟道高流速造成高回流比对出水效果的影响; ●单沟式氧化沟的脱氮效果??在单沟式氧化沟中采用与奥贝尔氧化沟外沟道同样的曝气布置,考察其处理效果; ●低氧完全混合条件下同时硝化、反硝化的效果??低氧完全混合条件下能否实现与奥贝尔氧化沟的外沟道相当的同时硝化与反硝化? ●在奥贝尔氧化沟的外沟道中采用微孔曝气器代替曝气转碟,是否会得到同样的效果? 3.2 奥贝尔氧化沟原形工艺模拟 3.2.1 概述 根据实际情况
将外沟道平均分割成8个单元(1#~8#),4组曝气转碟分别置于4个单元中(1#、3#、5#、7#),即每隔一个单元放一组转碟,中沟道和内沟道分别只设一个单元(9#、10#)其中各设1组转碟。原水进入1#,混合液由8#回流至1#,回流污泥由二沉池回流至1#,见图3.2.1。由于测试期间属非正常运行,无法测定泥令,因此模拟中按设计泥令取值。 3.2.2原水水质模拟 原水水质按照模型组分的划分确定如下表3.2.1、3.2.2。 溶解性组分: SI??惰性COD SS??可生物降解COD SNH4??氨氮 SNOX??硝酸盐氮与亚硝酸盐氮 SALK??碱度 颗粒性组分: XI??惰性COD XS??可生物降解COD XH??异氧菌 XA??自养菌 Xss??悬浮物 表3.2.1溶解性组分 SI SS SMH4 SNOX SALK
mg/L mg/L mg/L mg/L mol/m3 18.0 348 16 1.6 6.0 表3.2.2颗粒性组分 XI XS XH XA XSS
mg/L mg/L mg/L mg/L mg/L
6.1 24 0 0 31.0 3.2.3数学模拟工艺流程及运行参数 工艺流程见下图: 工艺运行参数如下: 氧化沟池容: V1#~8#=1241m3 V9#=4611m3 V10#=3192m3 二沉池池容:V二沉=3612m3 流
量:Q=21670m3/d 水温:T=15°? 污泥加流比:R=61% 模拟混合液回流比:R=10000% 模拟供氧量:外沟:中沟:内沟=65:19:16 总供氧量:7392kgo2/d 3.2.4 数学模拟结果 计算所得污泥浓度为3500mgCOD/L,其余结果见表2.2.5。
表2.2.5 奥贝尔氧化沟原型工艺模拟分析 1# 2# 3# 4# 5# 6# 7# 8# 9# 10#
DO 0.23 0.05 0.22 0.08 0.33 0.16 0.44 0.26 0.71 2.35 SS 2.38 - - - - - - 0.31 0.24 0.28 SNH 2.6 - - - - - - 2.51 0.46 0.13
SNOX 0.2 - - - - - - 0.19 1.81 2.56 比较表2.2.1和2.2.2,可知模拟数据能够与实测数据很好地吻合: 绝大部分有机物和氮在外沟道去除:外沟道总氮为2.7mg/L(实测总氮为2.6mg/L),去除率为84%(实测为86.5%),有机物去除率为99.8%(实测为97.4%);只有少量氮在中沟、内沟去除,出水总氮为2.7mg/L(实测为2.4mg/L),去除率为84%(实测为86.4%);溶解氧有一定的变化梯度,但不形成绝对的缺氧、好氧区,而是形成介乎缺氧与厌氧之间的缺氧/厌氧区和介乎好氧与缺氧之间的好氧/缺氧区;计算所得污泥浓度相当于3032mg/L的MLSS,而实测污泥浓度MLSS为3037mg/L。
3.3 混合液回流比的作用 3.3.1 概述 假设在供氧量不变的条件下,考虑模拟的方便,外沟道内设2组转碟(模拟结果表明,2组与4组转碟差别不大),将外沟道平均分割成6个单元(1#~6#),2组曝气转碟分别置于2个单元中(1#、4#),即每隔2个单元放一组转碟,中沟道和内沟道同前,分别只设一个单元(7#、8#)。原水进入1#,混合液由6#回流至1#,混合液回流比由100倍改为10倍,回流污泥由二沉池回流至1#,其余模拟皆同2.2节,以考察奥贝尔外沟道中高回流比的作用。 工艺流程见下图: 其中,池容V1~6=1655m3。 3.3.2 数学模拟结果 模拟结果见下表。