综合练习题1(函数、极限与连续部分)
1.填空题 (1)函数f(x)?1的定义域是. 答案:x?2且x?3.
ln(x?2)1?4?x2的定义域是.答案:(?2,?1)?(?1,2]
ln(x?2)22(2)函数f(x)?(3)函数f(x?2)?x?4x?7,则f(x)?.答案:f(x)?x?3
3??xsin?1,x?0(4)若函数f(x)??在x?0处连续,则k?.答案:k?1 x?k,x?0?(5)函数f(x?1)?x?2x,则f(x)?.答案:f(x)?x?1
22x2?2x?3(6)函数y?的间断点是.答案:x??1
x?11?.答案:1
x??xsin4x(8)若lim?2,则k?.答案:k?2
x?0sinkx(7)limxsin2.单项选择题
e?x?ex(1)设函数y?,则该函数是( ).
2A.奇函数 B.偶函数 C.非奇非偶函数 D.既奇又偶函数 答案:B
(2)下列函数中为奇函数是(
).
e?x?ex2A.xsinx B. C.ln(x?1?x2)D.x?x
2答案:C
x?ln(x?5)的定义域为( ). x?4A.x??5 B.x??4 C.x??5且x?0D.x??5且x??4
(3)函数y?答案:D
(4)设f(x?1)?x?1,则f(x)?( ) A.x(x?1)B.x
221 / 10
C.x(x?2)D.(x?2)(x?1) 答案:C
?ex?2,x?0(5)当k?( )时,函数f(x)??在x?0处连续.
x?0?k,A.0 B.1C.2D.3 答案:D
?x2?1,x?0(6)当k?( )时,函数f(x)??,在x?0处连续.
x?0?k,A.0 B.1C.2D.?1 答案:B (7)函数f(x)?x?3的间断点是( ) 2x?3x?2A.x?1,x?2 B.x?3 C.x?1,x?2,x?3 D.无间断点 答案:A 3.计算题
x2?3x?2 (1)lim. 2x?2x?4x2?3x?2(x?2)(x?1)x?11?lim?lim? 解:lim2x?2x?2x?2(x?2)(x?2)x?24x?4x2?9(2)lim2
x?3x?2x?3x2?9(x?3)(x?3)x?363?lim?lim?? 解:lim2x?3x?2x?3x?3(x?3)(x?1)x?3x?142x2?6x?8 (3)lim2
x?4x?5x?4x2?6x?8(x?4)(x?2)x?22?lim?lim? 解:lim2x?4x?5x?4x?4(x?4)(x?1)x?4x?13
综合练习题2(导数与微分部分)
2 / 10
1.填空题 (1)曲线f(x)?答案:
x?1在(1,2)点的切斜率是.
1 2x(2)曲线f(x)?e在(0,1)点的切线方程是. 答案:y?x?1 (3)已知f(x)?x?3,则f?(3)=. 答案:f?(x)?3x?3ln3
2x3xf?(3)=27(1?ln3)
(4)已知f(x)?lnx,则f??(x)=. 答案:f?(x)?11,f??(x)=?2 xx?x(5)若f(x)?xe,则f??(0)?.
?x?x答案:f??(x)??2e?xe
f??(0)??2
2.单项选择题 (1)若f(x)?e?xcosx,则f?(0)=( ).
A. 2 B.1 C. -1 D. -2 因f?(x)?(e?xcosx)??(e?x)?cosx?e?x(cosx)?
??e?xcosx?e?xsinx??e?x(cosx?sinx)
所以f?(0)??e(cos0?sin0)??1 答案:C
(2)设y?lg2x,则dy?( ). A.
?011ln101dx B.dx C.dx D.dx 2xxln10xx答案:B
(3)设y?f(x)是可微函数,则df(cos2x)?( ). A.2f?(cos2x)dxB.f?(cos2x)sin2xd2x
3 / 10