陕西科技大学
2015 级研究生课程考试答题纸
题号 得分 阅卷人
一 二 三 四 五 六 七 八 九 十 总分 考试科目 机械制造与装配自动化
专 业 机械工程
学 号 1505048
考生姓名 乔旭光
考生类别 专业学位硕士
注 意 事 项 1. 试题随试卷交回; 2. 试卷评阅后,一周内送交研究生秘书处保存; 3. 考生类别为学术硕士、专业学位硕士、在职人员攻读硕士学位。
浅谈机器人智能控制研究
摘要:以介绍机器人控制技术的发展及机器人智能控制的现状为基础,叙述了
模糊控制和人工神经网络控制在机器人中智能控制的方法。讨论了机器人智能控制中的模糊控制和变结构控制,神经网络控制和变结构控制,以及模糊控制和神经网络控制等几种智能控制技术的融合。并对模糊控制和神经网络控制等方法中的局限性作出了说明。
关键词:机器人;智能控制;模糊控制;人工神经网络
1 智能控制的主要方法
随着信息技术的发展,许多新方法和技术进入工程化、产品化阶段,这对自动控制技术提出崭新的挑战,促进了智能理论在控制技术中的应用,以解决用传统的方法难以解决的复杂系统的控制问题。
智能控制技术的主要方法有模糊控制、基于知识的专家控制、神经网络控制和集成智能控制等,以及常用优化算法有:遗传算法、蚁群算法、免疫算法等。 1.1 模糊控制
模糊控制以模糊集合、模糊语言变量、模糊推理为其理论基础,以先验知识和专家经验作为控制规则。其基本思想是用机器模拟人对系统的控制,就是在被控对象的模糊模型的基础上运用模糊控制器近似推理等手段,实现系统控制。在实现模糊控制时主要考虑模糊变量的隶属度函数的确定,以及控制规则的制定二者缺一不可。 1.2 专家控制
专家控制是将专家系统的理论技术与控制理论技术相结合,仿效专家的经验,实现对系统控制的一种智能控制。主体由知识库和推理机构组成,通过对知识的获取与组织,按某种策略适时选用恰当的规则进行推理,以实现对控制对象的控制。专家控制可以灵活地选取控制率,灵活性高;可通过调整控制器的参数,适应对象特性及环境的变化,适应性好;通过专家规则,系统可以在非线性、大偏差的情况下可靠地工作,鲁棒性强。 1.3 神经网络控制
神经网络模拟人脑神经元的活动,利用神经元之间的联结与权值的分布来表
2
示特定的信息,通过不断修正连接的权值进行自我学习,以逼近理论为依据进行神经网络建模,并以直接自校正控制、间接自校正控制、神经网络预测控制等方式实现智能控制。 1.4 学习控制 (1)遗传算法学习控制
智能控制是通过计算机实现对系统的控制,因此控制技术离不开优化技术。快速、高效、全局化的优化算法是实现智能控制的重要手段。遗传算法是模拟自然选择和遗传机制的一种搜索和优化算法,它模拟生物界/生存竞争,优胜劣汰,适者生存的机制,利用复制、交叉、变异等遗传操作来完成寻优。遗传算法作为优化搜索算法,一方面希望在宽广的空间内进行搜索,从而提高求得最优解的概率;另一方面又希望向着解的方向尽快缩小搜索范围,从而提高搜索效率。如何同时提高搜索最优解的概率和效率,是遗传算法的一个主要研究方向 。 (2)迭代学习控制
迭代学习控制模仿人类学习的方法、即通过多次的训练,从经验中学会某种技能,来达到有效控制的目的。迭代学习控制能够通过一系列迭代过程实现对二阶非线性动力学系统的跟踪控制。整个控制结构由线性反馈控制器和前馈学习补偿控制器组成,其中线性反馈控制器保证了非线性系统的稳定运行、前馈补偿控制器保证了系统的跟踪控制精度。它在执行重复运动的非线性机器人系统的控制中是相当成功的。
2 机器人智能控制技术的发展
从机器人诞生到20 世纪80 年代初,机器人技术经历了一个长期缓慢的发展过程。到了20 世纪90 年代,随着计算机技术、微电子技术、网络技术等的快速发展,机器人技术也得到了飞速发展。智能机器人的研究是目前机器人研究中的热门课题。作为一门新兴学科,它融合了神经生理学、心理学、运筹学、控制论和计算机技术等多学科思想和技术成果。智能控制的研究主要体现在对基于知识系统、模糊逻辑和人工神经网络的研究。智能机器人可以在非预先规定的环境中自行解决问题。智能机器人的技术关键就是自适应和自学习的能力,而模糊控制和神经网络控制的应用显示出诸多优势,具有广阔的应用前景。 2.1 机器人控制技术的发展
3